Title: | Longitudinal Visualization Functions |
---|---|
Description: | Functions that plot and summarize biomarkers/labs of interest. Visualizations include: box plot, correlation plot, density distribution, line plot and spaghetti plot. Data are expected in ADaM structure. Requires analysis subject level (ADSL) and analysis laboratory (ADLB) data sets. Beyond core variables, Limit of Quantification flag variable (LOQFL) is expected with levels 'Y', 'N' or NA. |
Authors: | Nick Paszty [aut, cre], Dawid Kaledkowski [aut], Ondrej Slama [aut], Adrian Waddell [aut], Wenyi Liu [aut], Jeffrey Tomlinson [aut], Bali Toth [aut], Junlue Zhao [aut], Maciej Nasinski [aut], Konrad Pagacz [aut], F. Hoffmann-La Roche AG [cph, fnd] |
Maintainer: | Nick Paszty <[email protected]> |
License: | Apache License 2.0 | file LICENSE |
Version: | 0.1.18 |
Built: | 2024-12-26 04:43:38 UTC |
Source: | https://github.com/insightsengineering/goshawk |
A box plot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the term box-and-whisker. Outliers may be plotted as individual points. Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution. The spacings between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data, and show outliers. In addition to the points themselves, they allow one to visually estimate various L-estimators, notably the interquartile range, midhinge, range, mid-range, and trimean.
g_boxplot( data, biomarker, param_var = "PARAMCD", yaxis_var, trt_group, xaxis_var = NULL, loq_flag_var = "LOQFL", loq_legend = TRUE, unit = NULL, color_manual = NULL, shape_manual = NULL, box = TRUE, ylim = c(NA, NA), dot_size = 2, alpha = 1, facet_ncol = NULL, rotate_xlab = FALSE, font_size = NULL, facet_var = NULL, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars )
g_boxplot( data, biomarker, param_var = "PARAMCD", yaxis_var, trt_group, xaxis_var = NULL, loq_flag_var = "LOQFL", loq_legend = TRUE, unit = NULL, color_manual = NULL, shape_manual = NULL, box = TRUE, ylim = c(NA, NA), dot_size = 2, alpha = 1, facet_ncol = NULL, rotate_xlab = FALSE, font_size = NULL, facet_var = NULL, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars )
data |
|
biomarker |
biomarker to visualize e.g. |
param_var |
name of variable containing biomarker codes e.g. |
yaxis_var |
name of variable containing biomarker results displayed on
Y-axis e.g. |
trt_group |
name of variable representing treatment |
xaxis_var |
variable used to group the data on the x-axis. |
loq_flag_var |
name of variable containing |
loq_legend |
|
unit |
biomarker unit label e.g. (U/L) |
color_manual |
vector of color for |
shape_manual |
vector of shapes (used with |
box |
add boxes to the plot (boolean) |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
dot_size |
plot dot size. |
alpha |
dot transparency (0 = transparent, 1 = opaque) |
facet_ncol |
number of facets per row. NULL = Use the default for |
rotate_xlab |
45 degree rotation of x-axis label values. |
font_size |
point size of text to use. NULL is use default size |
facet_var |
variable to facet the plot by, or |
hline_arb |
('numeric vector') value identifying intercept for arbitrary horizontal lines. |
hline_arb_color |
('character vector') optional, color for the arbitrary horizontal lines. |
hline_arb_label |
('character vector') optional, label for the legend to the arbitrary horizontal lines. |
hline_vars |
('character vector'), names of variables |
hline_vars_colors |
('character vector') colors for the horizontal lines defined by variables. |
hline_vars_labels |
('character vector') labels for the legend to the horizontal lines defined by variables. |
ggplot
object
Balazs Toth
Jeff Tomlinson (tomlinsj) [email protected]
# Example using ADaM structure analysis dataset. library(nestcolor) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = stringr::str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% mutate(ANRLO = .5, ANRHI = 1) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = .5, max = 1))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = 1, max = 1.5))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") g_boxplot(ADLB, biomarker = "CRP", param_var = "PARAMCD", yaxis_var = "AVAL", trt_group = "ARM", loq_flag_var = "LOQFL", loq_legend = FALSE, unit = "AVALU", shape_manual = c("N" = 1, "Y" = 2, "NA" = NULL), facet_var = "AVISIT", xaxis_var = "STUDYID", alpha = 0.5, rotate_xlab = TRUE, hline_arb = c(.9, 1.2), hline_arb_color = "blue", hline_arb_label = "Hori_line_label", hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"), hline_vars_colors = c("pink", "brown", "purple", "gray"), hline_vars_labels = c("A", "B", "C", "D") )
# Example using ADaM structure analysis dataset. library(nestcolor) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = stringr::str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% mutate(ANRLO = .5, ANRHI = 1) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = .5, max = 1))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = 1, max = 1.5))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") g_boxplot(ADLB, biomarker = "CRP", param_var = "PARAMCD", yaxis_var = "AVAL", trt_group = "ARM", loq_flag_var = "LOQFL", loq_legend = FALSE, unit = "AVALU", shape_manual = c("N" = 1, "Y" = 2, "NA" = NULL), facet_var = "AVISIT", xaxis_var = "STUDYID", alpha = 0.5, rotate_xlab = TRUE, hline_arb = c(.9, 1.2), hline_arb_color = "blue", hline_arb_label = "Hori_line_label", hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"), hline_vars_colors = c("pink", "brown", "purple", "gray"), hline_vars_labels = c("A", "B", "C", "D") )
Default plot displays correlation facetted by visit with color attributed treatment arms and
symbol attributed LOQ
values.
g_correlationplot( label = "Correlation Plot", data, param_var = "PARAMCD", xaxis_param = "CRP", xaxis_var = "BASE", xvar, yaxis_param = "IGG", yaxis_var = "AVAL", yvar, trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL_COMB", visit_facet = TRUE, loq_legend = TRUE, unit = "AVALU", xlim = c(NA, NA), ylim = c(NA, NA), title_text = title_text, xaxis_lab = xaxis_lab, yaxis_lab = yaxis_lab, color_manual = NULL, shape_manual = NULL, facet_ncol = 2, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars, vline_arb = numeric(0), vline_arb_color = "red", vline_arb_label = "Vertical line", vline_vars = character(0), vline_vars_colors = "green", vline_vars_labels = vline_vars, rotate_xlab = FALSE, font_size = 12, dot_size = 2, reg_text_size = 3 )
g_correlationplot( label = "Correlation Plot", data, param_var = "PARAMCD", xaxis_param = "CRP", xaxis_var = "BASE", xvar, yaxis_param = "IGG", yaxis_var = "AVAL", yvar, trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL_COMB", visit_facet = TRUE, loq_legend = TRUE, unit = "AVALU", xlim = c(NA, NA), ylim = c(NA, NA), title_text = title_text, xaxis_lab = xaxis_lab, yaxis_lab = yaxis_lab, color_manual = NULL, shape_manual = NULL, facet_ncol = 2, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars, vline_arb = numeric(0), vline_arb_color = "red", vline_arb_label = "Vertical line", vline_vars = character(0), vline_vars_colors = "green", vline_vars_labels = vline_vars, rotate_xlab = FALSE, font_size = 12, dot_size = 2, reg_text_size = 3 )
label |
text string to used to identify plot. |
data |
|
param_var |
name of variable containing biomarker codes e.g. |
xaxis_param |
x-axis biomarker to visualize e.g. |
xaxis_var |
name of variable containing biomarker results displayed on X-axis e.g. |
xvar |
x-axis analysis variable from transposed data set. |
yaxis_param |
y-axis biomarker to visualize e.g. |
yaxis_var |
name of variable containing biomarker results displayed on Y-axis.g. |
yvar |
y-axis analysis variable from transposed data set. |
trt_group |
name of variable representing treatment group e.g. |
visit |
name of variable containing nominal visits e.g. |
loq_flag_var |
name of variable containing |
visit_facet |
visit facet toggle. |
loq_legend |
|
unit |
name of variable containing biomarker unit e.g. |
xlim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the x-axis if the default limits are not suitable. |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
title_text |
plot title. |
xaxis_lab |
x-axis label. |
yaxis_lab |
y-axis label. |
color_manual |
vector of colors applied to treatment values. |
shape_manual |
vector of symbols applied to |
facet_ncol |
number of facets per row. |
facet |
set layout to use treatment facetting. |
facet_var |
variable to use for treatment facetting. |
reg_line |
include regression line and annotations for slope and coefficient. Use with facet = TRUE. |
hline_arb |
('numeric vector') value identifying intercept for arbitrary horizontal lines. |
hline_arb_color |
('character vector') optional, color for the arbitrary horizontal lines. |
hline_arb_label |
('character vector') optional, label for the legend to the arbitrary horizontal lines. |
hline_vars |
('character vector'), names of variables |
hline_vars_colors |
('character vector') colors for the horizontal lines defined by variables. |
hline_vars_labels |
('character vector') labels for the legend to the horizontal lines defined by variables. |
vline_arb |
('numeric vector') value identifying intercept for arbitrary vertical lines. |
vline_arb_color |
('character vector') optional, color for the arbitrary vertical lines. |
vline_arb_label |
('character vector') optional, label for the legend to the arbitrary vertical lines. |
vline_vars |
('character vector'), names of variables |
vline_vars_colors |
('character vector') colors for the vertical lines defined by variables. |
vline_vars_labels |
('character vector') labels for the legend to the vertical lines defined by variables. |
rotate_xlab |
45 degree rotation of x-axis label values. |
font_size |
font size control for title, x-axis label, y-axis label and legend. |
dot_size |
plot dot size. |
reg_text_size |
font size control for regression line annotations. |
Regression uses deming
model.
Nick Paszty (npaszty) [email protected]
Balazs Toth (tothb2) [email protected]
# Example using ADaM structure analysis dataset. library(stringr) library(tidyr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") # assign LOQ flag symbols: circles for "N" and triangles for "Y", squares for "NA" shape_manual <- c("N" = 1, "Y" = 2, "NA" = 0) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) %>% mutate( ANRHI = case_when( PARAMCD == "ALT" ~ 60, PARAMCD == "CRP" ~ 70, PARAMCD == "IGA" ~ 80, TRUE ~ NA_real_ ), ANRLO = case_when( PARAMCD == "ALT" ~ 20, PARAMCD == "CRP" ~ 30, PARAMCD == "IGA" ~ 40, TRUE ~ NA_real_ ) ) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = 25, max = 30))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = 70, max = 75))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, flag_var = "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") # given the 2 param and 2 analysis vars we need to transform the data plot_data_t1 <- ADLB %>% gather( ANLVARS, ANLVALS, PARAM, LBSTRESC, BASE2, BASE, AVAL, BASE, LOQFL, ANRHI, ANRLO, ULOQN, LLOQN ) %>% mutate(ANL.PARAM = ifelse(ANLVARS %in% c("PARAM", "LBSTRESC", "LOQFL"), paste0(ANLVARS, "_", PARAMCD), paste0(ANLVARS, ".", PARAMCD) )) %>% select(USUBJID, ARM, ARMCD, AVISITN, AVISITCD, ANL.PARAM, ANLVALS) %>% spread(ANL.PARAM, ANLVALS) # the transformed analysis value variables are character and need to be converted to numeric for # ggplot # remove records where either of the analysis variables are NA since they will not appear on the # plot and will ensure that LOQFL = NA level is removed plot_data_t2 <- plot_data_t1 %>% filter(!is.na(BASE.CRP) & !is.na(AVAL.ALT)) %>% mutate_at(vars(contains(".")), as.numeric) %>% mutate( LOQFL_COMB = ifelse(LOQFL_CRP == "Y" | LOQFL_ALT == "Y", "Y", "N") ) g_correlationplot( label = "Correlation Plot", data = plot_data_t2, param_var = "PARAMCD", xaxis_param = c("CRP"), xaxis_var = "AVAL", xvar = "AVAL.CRP", yaxis_param = c("ALT"), yaxis_var = "BASE", yvar = "BASE.ALT", trt_group = "ARM", visit = "AVISITCD", visit_facet = TRUE, loq_legend = TRUE, unit = "AVALU", title_text = "Correlation of ALT to CRP", xaxis_lab = "CRP", yaxis_lab = "ALT", color_manual = color_manual, shape_manual = shape_manual, facet_ncol = 4, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline_arb = c(15, 25), hline_arb_color = c("gray", "green"), hline_arb_label = "Hori_line_label", vline_arb = c(.5, 1), vline_arb_color = c("red", "black"), vline_arb_label = c("Vertical Line A", "Vertical Line B"), hline_vars = c("ANRHI.ALT", "ANRLO.ALT", "ULOQN.ALT", "LLOQN.ALT"), hline_vars_colors = c("green", "blue", "purple", "cyan"), hline_vars_labels = c("ANRHI ALT Label", "ANRLO ALT Label", "ULOQN ALT Label", "LLOQN ALT Label"), vline_vars = c("ANRHI.CRP", "ANRLO.CRP", "ULOQN.CRP", "LLOQN.CRP"), vline_vars_colors = c("yellow", "orange", "brown", "gold"), vline_vars_labels = c("ANRHI CRP Label", "ANRLO CRP Label", "ULOQN CRP Label", "LLOQN CRP Label"), rotate_xlab = FALSE, font_size = 14, dot_size = 2, reg_text_size = 3 )
# Example using ADaM structure analysis dataset. library(stringr) library(tidyr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") # assign LOQ flag symbols: circles for "N" and triangles for "Y", squares for "NA" shape_manual <- c("N" = 1, "Y" = 2, "NA" = 0) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) %>% mutate( ANRHI = case_when( PARAMCD == "ALT" ~ 60, PARAMCD == "CRP" ~ 70, PARAMCD == "IGA" ~ 80, TRUE ~ NA_real_ ), ANRLO = case_when( PARAMCD == "ALT" ~ 20, PARAMCD == "CRP" ~ 30, PARAMCD == "IGA" ~ 40, TRUE ~ NA_real_ ) ) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = 25, max = 30))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse( USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = 70, max = 75))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, flag_var = "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") # given the 2 param and 2 analysis vars we need to transform the data plot_data_t1 <- ADLB %>% gather( ANLVARS, ANLVALS, PARAM, LBSTRESC, BASE2, BASE, AVAL, BASE, LOQFL, ANRHI, ANRLO, ULOQN, LLOQN ) %>% mutate(ANL.PARAM = ifelse(ANLVARS %in% c("PARAM", "LBSTRESC", "LOQFL"), paste0(ANLVARS, "_", PARAMCD), paste0(ANLVARS, ".", PARAMCD) )) %>% select(USUBJID, ARM, ARMCD, AVISITN, AVISITCD, ANL.PARAM, ANLVALS) %>% spread(ANL.PARAM, ANLVALS) # the transformed analysis value variables are character and need to be converted to numeric for # ggplot # remove records where either of the analysis variables are NA since they will not appear on the # plot and will ensure that LOQFL = NA level is removed plot_data_t2 <- plot_data_t1 %>% filter(!is.na(BASE.CRP) & !is.na(AVAL.ALT)) %>% mutate_at(vars(contains(".")), as.numeric) %>% mutate( LOQFL_COMB = ifelse(LOQFL_CRP == "Y" | LOQFL_ALT == "Y", "Y", "N") ) g_correlationplot( label = "Correlation Plot", data = plot_data_t2, param_var = "PARAMCD", xaxis_param = c("CRP"), xaxis_var = "AVAL", xvar = "AVAL.CRP", yaxis_param = c("ALT"), yaxis_var = "BASE", yvar = "BASE.ALT", trt_group = "ARM", visit = "AVISITCD", visit_facet = TRUE, loq_legend = TRUE, unit = "AVALU", title_text = "Correlation of ALT to CRP", xaxis_lab = "CRP", yaxis_lab = "ALT", color_manual = color_manual, shape_manual = shape_manual, facet_ncol = 4, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline_arb = c(15, 25), hline_arb_color = c("gray", "green"), hline_arb_label = "Hori_line_label", vline_arb = c(.5, 1), vline_arb_color = c("red", "black"), vline_arb_label = c("Vertical Line A", "Vertical Line B"), hline_vars = c("ANRHI.ALT", "ANRLO.ALT", "ULOQN.ALT", "LLOQN.ALT"), hline_vars_colors = c("green", "blue", "purple", "cyan"), hline_vars_labels = c("ANRHI ALT Label", "ANRLO ALT Label", "ULOQN ALT Label", "LLOQN ALT Label"), vline_vars = c("ANRHI.CRP", "ANRLO.CRP", "ULOQN.CRP", "LLOQN.CRP"), vline_vars_colors = c("yellow", "orange", "brown", "gold"), vline_vars_labels = c("ANRHI CRP Label", "ANRLO CRP Label", "ULOQN CRP Label", "LLOQN CRP Label"), rotate_xlab = FALSE, font_size = 14, dot_size = 2, reg_text_size = 3 )
Default plot displays overall density facetted by visit with treatment arms and combined treatment overlaid.
g_density_distribution_plot( label = "Density Distribution Plot", data, param_var = "PARAMCD", param = "CRP", xaxis_var = "AVAL", trt_group = "ARM", unit = "AVALU", loq_flag_var = "LOQFL", xlim = c(NA, NA), ylim = c(NA, NA), color_manual = NULL, color_comb = "#39ff14", comb_line = TRUE, facet_var = "AVISITCD", hline_arb = character(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", facet_ncol = 2, rotate_xlab = FALSE, font_size = 12, line_size = 2, rug_plot = FALSE )
g_density_distribution_plot( label = "Density Distribution Plot", data, param_var = "PARAMCD", param = "CRP", xaxis_var = "AVAL", trt_group = "ARM", unit = "AVALU", loq_flag_var = "LOQFL", xlim = c(NA, NA), ylim = c(NA, NA), color_manual = NULL, color_comb = "#39ff14", comb_line = TRUE, facet_var = "AVISITCD", hline_arb = character(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", facet_ncol = 2, rotate_xlab = FALSE, font_size = 12, line_size = 2, rug_plot = FALSE )
label |
text string used to identify plot. |
data |
|
param_var |
name of variable containing biomarker codes e.g. |
param |
biomarker to visualize e.g. |
xaxis_var |
name of variable containing biomarker results displayed on X-axis e.g. |
trt_group |
name of variable representing treatment group e.g. |
unit |
name of variable containing biomarker unit e.g. |
loq_flag_var |
name of variable containing |
xlim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the x-axis if the default limits are not suitable. |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
color_manual |
vector of colors applied to treatment values. |
color_comb |
name or hex value for combined treatment color. |
comb_line |
display combined treatment line toggle. |
facet_var |
variable to use for facetting. |
hline_arb |
('numeric vector') value identifying intercept for arbitrary horizontal lines. |
hline_arb_color |
('character vector') optional, color for the arbitrary horizontal lines. |
hline_arb_label |
('character vector') optional, label for the legend to the arbitrary horizontal lines. |
facet_ncol |
number of facets per row. |
rotate_xlab |
45 degree rotation of x-axis label values. |
font_size |
font size control for title, x-axis label, y-axis label and legend. |
line_size |
plot line thickness. |
rug_plot |
should a rug plot be displayed under the density plot. Note this option is most useful if the data only contains a single treatment group. |
Nick Paszty (npaszty) [email protected]
Balazs Toth (tothb2) [email protected]
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_density_distribution_plot( label = "Density Distribution Plot", data = ADLB, param_var = "PARAMCD", param = c("CRP"), xaxis_var = "AVAL", unit = "AVALU", color_manual = color_manual, color_comb = "#39ff14", comb_line = FALSE, facet_var = "AVISITCD", hline_arb = 1.75, hline_arb_color = "black", hline_arb_label = "Horizontal Line A", facet_ncol = 2, rotate_xlab = FALSE, font_size = 10, line_size = .5 )
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_density_distribution_plot( label = "Density Distribution Plot", data = ADLB, param_var = "PARAMCD", param = c("CRP"), xaxis_var = "AVAL", unit = "AVALU", color_manual = color_manual, color_comb = "#39ff14", comb_line = FALSE, facet_var = "AVISITCD", hline_arb = 1.75, hline_arb_color = "black", hline_arb_label = "Horizontal Line A", facet_ncol = 2, rotate_xlab = FALSE, font_size = 10, line_size = .5 )
Function to create line plot of summary statistics over time.
g_lineplot( label = "Line Plot", data, biomarker_var = "PARAMCD", biomarker_var_label = "PARAM", biomarker, value_var = "AVAL", unit_var = "AVALU", loq_flag_var = "LOQFL", ylim = c(NA, NA), trt_group, trt_group_level = NULL, shape = NULL, shape_type = NULL, time, time_level = NULL, color_manual = NULL, line_type = NULL, median = FALSE, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", xtick = ggplot2::waiver(), xlabel = xtick, rotate_xlab = FALSE, plot_font_size = 12, dot_size = 3, dodge = 0.4, plot_height = 989, count_threshold = 0, table_font_size = 12, display_center_tbl = TRUE )
g_lineplot( label = "Line Plot", data, biomarker_var = "PARAMCD", biomarker_var_label = "PARAM", biomarker, value_var = "AVAL", unit_var = "AVALU", loq_flag_var = "LOQFL", ylim = c(NA, NA), trt_group, trt_group_level = NULL, shape = NULL, shape_type = NULL, time, time_level = NULL, color_manual = NULL, line_type = NULL, median = FALSE, hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", xtick = ggplot2::waiver(), xlabel = xtick, rotate_xlab = FALSE, plot_font_size = 12, dot_size = 3, dodge = 0.4, plot_height = 989, count_threshold = 0, table_font_size = 12, display_center_tbl = TRUE )
label |
text string to be displayed as plot label. |
data |
|
biomarker_var |
name of variable containing biomarker names. |
biomarker_var_label |
name of variable containing biomarker labels. |
biomarker |
biomarker name to be analyzed. |
value_var |
name of variable containing biomarker results. |
unit_var |
name of variable containing biomarker result unit. |
loq_flag_var |
name of variable containing |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
trt_group |
name of variable representing treatment group. |
trt_group_level |
vector that can be used to define the factor level of |
shape |
categorical variable whose levels are used to split the plot lines. |
shape_type |
vector of symbol types. |
time |
name of variable containing visit names. |
time_level |
vector that can be used to define the factor level of time. Only use it when x-axis variable is character or factor. |
color_manual |
vector of colors. |
line_type |
vector of line types. |
median |
boolean whether to display median results. |
hline_arb |
('numeric vector') value identifying intercept for arbitrary horizontal lines. |
hline_arb_color |
('character vector') optional, color for the arbitrary horizontal lines. |
hline_arb_label |
('character vector') optional, label for the legend to the arbitrary horizontal lines. |
xtick |
a vector to define the tick values of time in x-axis.
Default value is |
xlabel |
vector with same length of |
rotate_xlab |
boolean whether to rotate x-axis labels. |
plot_font_size |
control font size for title, x-axis, y-axis and legend font. |
dot_size |
plot dot size. Default to 3. |
dodge |
control position dodge. |
plot_height |
height of produced plot. 989 pixels by default. |
count_threshold |
|
table_font_size |
|
display_center_tbl |
boolean whether to include table of means or medians |
Currently, the output plot can display mean and median of input value. For mean, the error bar denotes 95\ quartile.
ggplot
object
Balazs Toth ([email protected])
Wenyi Liu ([email protected])
# Example using ADaM structure analysis dataset. library(stringr) library(dplyr) library(nestcolor) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "thistle", "Placebo" = "orange", "Combination" = "steelblue") type_manual <- c("150mg QD" = "solid", "Placebo" = "dashed", "Combination" = "dotted") ADSL <- rADSL %>% filter(!(ARM == "B: Placebo" & AGE < 40)) ADLB <- rADLB ADLB <- right_join(ADLB, ADSL[, c("STUDYID", "USUBJID")]) var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCD", color_manual = NULL, line_type = type_manual, median = TRUE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c("BL", "W 1", "W 5"), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCD", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c("BL", "W 1", "W 5"), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600, count_threshold = 90, table_font_size = 15 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = TRUE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = subset(ADLB, SEX %in% c("M", "F")), biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = "SEX", time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 1500, dot_size = 1 ) g_lineplot( label = "Line Plot", data = subset(ADLB, SEX %in% c("M", "F")), biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = "SEX", time = "AVISITCDN", color_manual = NULL, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 1500, dot_size = 4 )
# Example using ADaM structure analysis dataset. library(stringr) library(dplyr) library(nestcolor) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "thistle", "Placebo" = "orange", "Combination" = "steelblue") type_manual <- c("150mg QD" = "solid", "Placebo" = "dashed", "Combination" = "dotted") ADSL <- rADSL %>% filter(!(ARM == "B: Placebo" & AGE < 40)) ADLB <- rADLB ADLB <- right_join(ADLB, ADSL[, c("STUDYID", "USUBJID")]) var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCD", color_manual = NULL, line_type = type_manual, median = TRUE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c("BL", "W 1", "W 5"), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCD", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c("BL", "W 1", "W 5"), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600, count_threshold = 90, table_font_size = 15 ) g_lineplot( label = "Line Plot", data = ADLB, biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = NULL, time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = TRUE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 600 ) g_lineplot( label = "Line Plot", data = subset(ADLB, SEX %in% c("M", "F")), biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = "SEX", time = "AVISITCDN", color_manual = color_manual, line_type = type_manual, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 1500, dot_size = 1 ) g_lineplot( label = "Line Plot", data = subset(ADLB, SEX %in% c("M", "F")), biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", shape = "SEX", time = "AVISITCDN", color_manual = NULL, median = FALSE, hline_arb = c(.9, 1.1, 1.2, 1.5), hline_arb_color = c("green", "red", "blue", "pink"), hline_arb_label = c("A", "B", "C", "D"), xtick = c(0, 1, 5), xlabel = c("Baseline", "Week 1", "Week 5"), rotate_xlab = FALSE, plot_height = 1500, dot_size = 4 )
g_scatterplot()
is deprecated. Please use
g_correlationplot()
instead. Default plot displays scatter facetted by
visit with color attributed treatment arms and symbol attributed LOQ
values.
g_scatterplot( label = "Scatter Plot", data, param_var = "PARAMCD", param = "CRP", xaxis_var = "BASE", yaxis_var = "AVAL", trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL", unit = "AVALU", xlim = c(NA, NA), ylim = c(NA, NA), color_manual = NULL, shape_manual = NULL, facet_ncol = 2, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline = NULL, vline = NULL, rotate_xlab = FALSE, font_size = 12, dot_size = NULL, reg_text_size = 3 )
g_scatterplot( label = "Scatter Plot", data, param_var = "PARAMCD", param = "CRP", xaxis_var = "BASE", yaxis_var = "AVAL", trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL", unit = "AVALU", xlim = c(NA, NA), ylim = c(NA, NA), color_manual = NULL, shape_manual = NULL, facet_ncol = 2, facet = FALSE, facet_var = "ARM", reg_line = FALSE, hline = NULL, vline = NULL, rotate_xlab = FALSE, font_size = 12, dot_size = NULL, reg_text_size = 3 )
label |
text string to used to identify plot. |
data |
|
param_var |
name of variable containing biomarker codes e.g. |
param |
biomarker to visualize e.g. |
xaxis_var |
name of variable containing biomarker results displayed on X-axis e.g. |
yaxis_var |
name of variable containing biomarker results displayed on Y-axis e.g. |
trt_group |
name of variable representing treatment group e.g. |
visit |
name of variable containing nominal visits e.g. |
loq_flag_var |
name of variable containing |
unit |
name of variable containing biomarker unit e.g. |
xlim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the x-axis if the default limits are not suitable. |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
color_manual |
vector of colors applied to treatment values. |
shape_manual |
vector of symbols applied to |
facet_ncol |
number of facets per row. |
facet |
set layout to use treatment facetting. |
facet_var |
variable to use for treatment facetting. |
reg_line |
include regression line and annotations for slope and coefficient in visualization. Use with facet = TRUE. |
hline |
y-axis value to position a horizontal line. |
vline |
x-axis value to position a vertical line. |
rotate_xlab |
45 degree rotation of x-axis label values. |
font_size |
font size control for title, x-axis label, y-axis label and legend. |
dot_size |
plot dot size. |
reg_text_size |
font size control for regression line annotations. |
Regression uses deming
model.
Nick Paszty (npaszty) [email protected]
Balazs Toth (tothb2) [email protected]
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") # assign LOQ flag symbols: circles for "N" and triangles for "Y", squares for "NA" shape_manual <- c("N" = 1, "Y" = 2, "NA" = 0) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_scatterplot( label = "Scatter Plot", data = ADLB, param_var = "PARAMCD", param = c("ALT"), xaxis_var = "BASE", yaxis_var = "AVAL", trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL", unit = "AVALU", color_manual = color_manual, shape_manual = shape_manual, facet_ncol = 2, facet = TRUE, facet_var = "ARM", reg_line = TRUE, hline = NULL, vline = .5, rotate_xlab = TRUE, font_size = 14, dot_size = 2, reg_text_size = 3 )
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") # assign LOQ flag symbols: circles for "N" and triangles for "Y", squares for "NA" shape_manual <- c("N" = 1, "Y" = 2, "NA" = 0) ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] g_scatterplot( label = "Scatter Plot", data = ADLB, param_var = "PARAMCD", param = c("ALT"), xaxis_var = "BASE", yaxis_var = "AVAL", trt_group = "ARM", visit = "AVISITCD", loq_flag_var = "LOQFL", unit = "AVALU", color_manual = color_manual, shape_manual = shape_manual, facet_ncol = 2, facet = TRUE, facet_var = "ARM", reg_line = TRUE, hline = NULL, vline = .5, rotate_xlab = TRUE, font_size = 14, dot_size = 2, reg_text_size = 3 )
This function is rendered by teal.goshawk module
g_spaghettiplot( data, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker_var_label = "PARAM", biomarker, value_var = "AVAL", unit_var = "AVALU", trt_group, trt_group_level = NULL, loq_flag_var = "LOQFL", time, time_level = NULL, color_manual = NULL, color_comb = "#39ff14", ylim = c(NA, NA), alpha = 1, facet_ncol = 2, facet_scales = c("fixed", "free", "free_x", "free_y"), xtick = ggplot2::waiver(), xlabel = xtick, rotate_xlab = FALSE, font_size = 12, dot_size = 2, group_stats = "NONE", hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars )
g_spaghettiplot( data, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker_var_label = "PARAM", biomarker, value_var = "AVAL", unit_var = "AVALU", trt_group, trt_group_level = NULL, loq_flag_var = "LOQFL", time, time_level = NULL, color_manual = NULL, color_comb = "#39ff14", ylim = c(NA, NA), alpha = 1, facet_ncol = 2, facet_scales = c("fixed", "free", "free_x", "free_y"), xtick = ggplot2::waiver(), xlabel = xtick, rotate_xlab = FALSE, font_size = 12, dot_size = 2, group_stats = "NONE", hline_arb = numeric(0), hline_arb_color = "red", hline_arb_label = "Horizontal line", hline_vars = character(0), hline_vars_colors = "green", hline_vars_labels = hline_vars )
data |
data frame with variables to be summarized and generate statistics which will display in the plot. |
subj_id |
unique subject id variable name. |
biomarker_var |
name of variable containing biomarker names. |
biomarker_var_label |
name of variable containing biomarker labels. |
biomarker |
biomarker name to be analyzed. |
value_var |
name of variable containing biomarker results. |
unit_var |
name of variable containing biomarker units. |
trt_group |
name of variable representing treatment group. |
trt_group_level |
vector that can be used to define the factor level of |
loq_flag_var |
name of variable containing |
time |
name of variable containing visit names. |
time_level |
vector that can be used to define the factor level of time. Only use it when x-axis variable is character or factor. |
color_manual |
vector of colors. |
color_comb |
name or hex value for combined treatment color. |
ylim |
('numeric vector') optional, a vector of length 2 to specify the minimum and maximum of the y-axis if the default limits are not suitable. |
alpha |
subject line transparency (0 = transparent, 1 = opaque) |
facet_ncol |
number of facets per row. |
facet_scales |
passed to |
xtick |
a vector to define the tick values of time in x-axis.
Default value is |
xlabel |
vector with same length of |
rotate_xlab |
boolean whether to rotate x-axis labels. |
font_size |
control font size for title, x-axis, y-axis and legend font. |
dot_size |
plot dot size. Default to 2. |
group_stats |
control group mean or median overlay. |
hline_arb |
('numeric vector') value identifying intercept for arbitrary horizontal lines. |
hline_arb_color |
('character vector') optional, color for the arbitrary horizontal lines. |
hline_arb_label |
('character vector') optional, label for the legend to the arbitrary horizontal lines. |
hline_vars |
('character vector'), names of variables |
hline_vars_colors |
('character vector') colors for the horizontal lines defined by variables. |
hline_vars_labels |
('character vector') labels for the legend to the horizontal lines defined by variables. |
ggplot
object
Wenyi Liu ([email protected])
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) %>% mutate(ANRLO = .5, ANRHI = 1) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = .5, max = .7))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = .9, max = 1.2))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCD", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c("BL", "W 1", "W 4"), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_vars = c("ANRHI", "ANRLO"), hline_vars_colors = c("pink", "brown") ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCD", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c("BL", "W 1", "W 4"), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_arb = 1.3, hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"), hline_vars_colors = c("pink", "brown", "purple", "gray"), dot_size = 3 ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCDN", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c(0, 1, 4), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO"), dot_size = 4 ) # removing missing levels from the plot with facet_scales g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "RACE", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, facet_scales = "fixed", rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO") ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "RACE", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, facet_scales = "free_x", rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO"), dot_size = 1 )
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C") ADLB <- rADLB var_labels <- lapply(ADLB, function(x) attributes(x)$label) ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) %>% mutate(ANRLO = .5, ANRHI = 1) %>% rowwise() %>% group_by(PARAMCD) %>% mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste("<", round(runif(1, min = .5, max = .7))), LBSTRESC )) %>% mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE), paste(">", round(runif(1, min = .9, max = 1.2))), LBSTRESC )) %>% ungroup() attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]] attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit" attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit" # add LLOQ and ULOQ variables ADLB_LOQS <- goshawk:::h_identify_loq_values(ADLB, "LOQFL") ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM") g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCD", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c("BL", "W 1", "W 4"), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_vars = c("ANRHI", "ANRLO"), hline_vars_colors = c("pink", "brown") ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCD", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c("BL", "W 1", "W 4"), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_arb = 1.3, hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"), hline_vars_colors = c("pink", "brown", "purple", "gray"), dot_size = 3 ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "AVISITCDN", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, xtick = c(0, 1, 4), xlabel = c("Baseline", "Week 1", "Week 4"), rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO"), dot_size = 4 ) # removing missing levels from the plot with facet_scales g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "RACE", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, facet_scales = "fixed", rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO") ) g_spaghettiplot( data = ADLB, subj_id = "USUBJID", biomarker_var = "PARAMCD", biomarker = "CRP", value_var = "AVAL", trt_group = "ARM", time = "RACE", color_manual = color_manual, color_comb = "#39ff14", alpha = .02, facet_scales = "free_x", rotate_xlab = FALSE, group_stats = "median", hline_arb = c(.5, .7, 1), hline_arb_color = c("blue", "red", "green"), hline_arb_label = c("Arb_Hori_line_A", "Arb_Hori_line_B", "Arb_Hori_line_C"), hline_vars = c("ANRHI", "ANRLO"), dot_size = 1 )
Output descriptive summary statistics table as a data frame. Includes biomarker, treatment,
visit,
n, mean, median, SD, min, max, %missing values, % LOQ
values.
t_summarytable( data, trt_group, param_var, param, xaxis_var, facet_var = "AVISITCD", loq_flag_var = "LOQFL", ... )
t_summarytable( data, trt_group, param_var, param, xaxis_var, facet_var = "AVISITCD", loq_flag_var = "LOQFL", ... )
data |
name of data frame to summarize. |
trt_group |
treatment group variable name e.g. |
param_var |
name of variable containing biomarker codes e.g. |
param |
biomarker to visualize e.g. |
xaxis_var |
name of variable containing biomarker results displayed on X-axis e.g. |
facet_var |
name of variable facetted on typically containing visit values e.g. |
loq_flag_var |
name of variable containing |
... |
additional options |
provide additional information as needed. link to specification file https://posit.co/
Nick Paszty (npaszty) [email protected]
Balazs Toth (tothb2) [email protected]
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) ADLB <- rADLB ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) tbl <- t_summarytable( data = ADLB, trt_group = "ARM", param_var = "PARAMCD", param = c("CRP"), xaxis_var = "AVAL", facet_var = "AVISITCD", loq_flag_var = "LOQFL" ) tbl
# Example using ADaM structure analysis dataset. library(stringr) # original ARM value = dose value arm_mapping <- list( "A: Drug X" = "150mg QD", "B: Placebo" = "Placebo", "C: Combination" = "Combination" ) ADLB <- rADLB ADLB <- ADLB %>% mutate(AVISITCD = case_when( AVISIT == "SCREENING" ~ "SCR", AVISIT == "BASELINE" ~ "BL", grepl("WEEK", AVISIT) ~ paste( "W", trimws( substr( AVISIT, start = 6, stop = str_locate(AVISIT, "DAY") - 1 ) ) ), TRUE ~ NA_character_ )) %>% mutate(AVISITCDN = case_when( AVISITCD == "SCR" ~ -2, AVISITCD == "BL" ~ 0, grepl("W", AVISITCD) ~ as.numeric(gsub("\\D+", "", AVISITCD)), TRUE ~ NA_real_ )) %>% # use ARMCD values to order treatment in visualization legend mutate(TRTORD = ifelse(grepl("C", ARMCD), 1, ifelse(grepl("B", ARMCD), 2, ifelse(grepl("A", ARMCD), 3, NA) ) )) %>% mutate(ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))])) %>% mutate(ARM = factor(ARM) %>% reorder(TRTORD)) tbl <- t_summarytable( data = ADLB, trt_group = "ARM", param_var = "PARAMCD", param = c("CRP"), xaxis_var = "AVAL", facet_var = "AVISITCD", loq_flag_var = "LOQFL" ) tbl