
Package: osprey (via r-universe)
September 4, 2024

Type Package

Title R Package to Create TLGs

Version 0.1.16

Date 2023-08-11

Description Community effort to collect TLG code and create a
catalogue.

License Apache License 2.0 | file LICENSE

URL https://github.com/insightsengineering/osprey

BugReports https://github.com/insightsengineering/osprey/issues

Depends dplyr (>= 0.8.0), ggplot2 (>= 2.0.0), R (>= 3.6)

Imports checkmate, cowplot, DescTools, grDevices, grid, gridExtra,
gtable, methods, rlang, stats, stringr, tibble, tidyr (>=
1.0.0)

Suggests knitr, nestcolor (>= 0.1.0), tern (>= 0.7.10), testthat (>=
2.0)

Config/Needs/website insightsengineering/nesttemplate

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://insightsengineering.r-universe.dev

RemoteUrl https://github.com/insightsengineering/osprey

RemoteRef v0.1.16

RemoteSha 3d40c617ff9aeccc1ec03064a19627a339a5f3a5

1

https://github.com/insightsengineering/osprey
https://github.com/insightsengineering/osprey/issues


2 as_pdf

Contents
as_pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
create_flag_vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
grobs2pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
g_ae_sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
g_butterfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
g_events_term_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
g_heat_bygrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
g_hy_law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
g_patient_profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
g_spiderplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
g_swimlane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
g_waterfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
patient_domain_profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
spiderplot_simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
stream_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
stream_filter_convwhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
stream_filter_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Index 44

as_pdf Output decorated grob (gTree) objects as PDF

Description

This is an utility function to output a decorated grob (gTree) object

Usage

as_pdf(grobs, outpath, pagesize = "letter.landscape")

Arguments

grobs a grid grob (gTree) object, optionally NULL if only a grob with the decoration
should be shown.

outpath specify full path to output pdf to BCE or BEE

pagesize name of pagesize (print size) and orientation, accepted values include "a4.landscape",
"a4.portrait", "letter.portrait" and "letter.landscape" (default)

Value

a pdf file

Author(s)

Chendi Liao (liaoc10) <chendi.liao@roche.com>



create_flag_vars 3

See Also

grobs2pdf()

Examples

## Not run:
library(ggplot2)
g <- with(iris, {

list(
ggplotGrob(qplot(Sepal.Length, Sepal.Width, col = Species)),
ggplotGrob(qplot(Sepal.Length, Petal.Length, col = Species)),
ggplotGrob(qplot(Sepal.Length, Petal.Width, col = Species))

)
})

# output to pdf
g %>% as_pdf("~/example_aspdf1.pdf")

## End(Not run)

create_flag_vars create AE overview flags

Description

create AE overview flags

Usage

create_flag_vars(
df,
fatal = AESDTH == "Y",
serious = AESER == "Y",
serious_withdrawl = AESER == "Y" & grepl("DRUG WITHDRAWN", AEACN),
serious_modified = AESER == "Y" & grepl("DRUG (INTERRUPTED|INCREASED|REDUCED)", AEACN),
serious_related = AESER == "Y" & AEREL == "Y",
withdrawl = grepl("DRUG WITHDRAWN", AEACN),
modified = grepl("DRUG (INTERRUPTED|INCREASED|REDUCED)", AEACN),
related = AEREL == "Y",
related_withdrawl = AEREL == "Y" & grepl("DRUG WITHDRAWN", AEACN),
related_modified = AEREL == "Y" & grepl("DRUG (INTERRUPTED|INCREASED|REDUCED)", AEACN),
ctc35 = AETOXGR %in% c("3", "4", "5"),
...

)



4 create_flag_vars

Arguments

df data frame of AE

fatal AE with fatal outcome derivation

serious Serious AE derivation.
serious_withdrawl

Serious AE leading to withdrawal derivation

serious_modified

Serious AE leading to dose modification derivation

serious_related

Related Serious AE derivation

withdrawl AE leading to withdrawal derivation

modified AE leading to dose modification derivation

related Related AE derivation
related_withdrawl

Related AE leading to withdrawal derivation

related_modified

Related AE leading to dose modification derivation

ctc35 Grade 3-5 AE derivation

... named expressions used to generate categories

Details

in this function, all flags are expressions calls, for simpler usage.

Examples

library(dplyr)

ADAE <- osprey::rADAE

# add additional dummy causality flags
ADAE <- ADAE %>%

mutate(AEREL1 = (AEREL == "Y" & ACTARM == "A: Drug X")) %>%
mutate(AEREL2 = (AEREL == "Y" & ACTARM == "B: Placebo"))

attr(ADAE[["AEREL1"]], "label") <- "AE related to A: Drug X"
attr(ADAE[["AEREL2"]], "label") <- "AE related to B: Placebo"

create_flag_vars(ADAE)
# create other flags
create_flag_vars(ADAE, `AENSER` = AESER != "Y")
# remove flags that are not needed
create_flag_vars(ADAE, fatal = NULL)



grobs2pdf 5

grobs2pdf Decorate grob (gTree) objects then outputs as IDM compatible PDF

Description

This is an utility function to decorated grob (gTree) object with titles and footnotes in accordance
with IDM specification and export as PDF file with full path to program and the output for easy
tracking and archiving.

Usage

grobs2pdf(
grobs,
titles,
footnotes,
progpath,
outpath,
fontsize = 9,
pagesize = "letter.landscape"

)

Arguments

grobs A grid grob (gTree) object, optionally NULL if only a grob with the decoration
should be shown

titles Vector of character strings. Vector elements are separated by a newline and
strings are wrapped according to the page with

footnotes Vector of character string. Same rules as for titles

progpath Specify the full path to the R program that generate the grobs and the PDF

outpath Specify full path to output pdf to BCE or BEE

fontsize Base font size used in pdf, default set to 9. Font size for title is set to fontsize
+ 1 (default = 10) and for footnotes set to fontsize - 1 (default = 8)

pagesize name of paper size and orientation, accepted values include "a4.landscape",
"a4.portrait", "letter.portrait" and "letter.landscape" (default)

Value

a pdf file

Author(s)

Chendi Liao (liaoc10) <chendi.liao@roche.com>



6 g_ae_sub

Examples

## Not run:
library(ggplot2)
library(tern)

g <- with(iris, {
list(
ggplotGrob(qplot(Sepal.Length, Sepal.Width, col = Species)),
ggplotGrob(qplot(Sepal.Length, Petal.Length, col = Species)),
ggplotGrob(qplot(Sepal.Length, Petal.Width, col = Species))

)
})

grobs2pdf(
grobs = g,
titles = "Visualization of Iris Data",
footnotes = "This is a footnote",
progpath = "~/example_prog.R",
outpath = "~/example_grobs2pdf.pdf"

)

## End(Not run)

g_ae_sub Adverse Event Category Plot

Description

Draw adverse event category plot.

Usage

g_ae_sub(
id,
arm,
arm_sl,
subgroups,
subgroups_sl,
trt = levels(arm)[1],
ref = levels(arm)[2],
indent = 4,
subgroups_levels = NULL,
xmax = 0,
conf_level = 0.95,
diff_ci_method = c("wald", "waldcc", "ac", "score", "scorecc", "mn", "mee", "blj",

"ha", "beal"),
fontsize = 4,



g_ae_sub 7

arm_n = FALSE,
draw = TRUE

)

Arguments

id (vector)
contains subject identifier. Usually it is ADAE$USUBJID.

arm (factor)
vector that contains arm information in analysis data. For example, ADAE$ACTARMCD.

arm_sl (vector)
contains the subject level treatment variable. For example, ADSL$ACTARM.

subgroups (data.frame)
Variables to conduct analysis.

subgroups_sl (data.frame)
Subject level variables to conduct analysis. Usually from ADSL.

trt (character)
indicates the name of the treatment arm. Default is the second level of arm.

ref (character)
indicates the name of the reference arm. Default is the first level of arm.

indent (numeric)
non-negative integer where 0 means that the subgroup levels should not be in-
dented

subgroups_levels

(list)
A nested named list of variables to conduct analysis. The names of the nested
lists are used to show as the label. The children lists should start with "Total" =
variable label, followed by labels for each level of said variable. See example
for reference.

xmax (numeric)
maximum range for the x-axis. x-axis range will be automatically assigned
based on risk output when xmax is less than or equal to 0. xmax is 0 by default

conf_level (numeric)
the confidence interval level, default is 0.95.

diff_ci_method (character)
the method used to calculate confidence interval. Default is "wald". Possible
choices are methods supported in BinomDiffCI.

fontsize (numeric)
font size for the plot. It is the size used in ggplot2 with default unit "mm", if
you want "points" you will need to divide the point number by ggplot2:::.pt.

arm_n (logical)
whether to display the N in each arm.

draw (logical)
whether to draw the plot.



8 g_ae_sub

Details

there is no equivalent STREAM output

Value

grob object

Author(s)

Liming Li (Lil128) <liming.li@roche.com>

Examples

library(grid)
ADAE <- osprey::rADAE
ADSL <- osprey::rADSL

id <- ADAE$USUBJID
arm <- ADAE$ACTARMCD
arm_sl <- as.character(ADSL$ACTARMCD)
subgroups_sl <- ADSL[, c("SEX", "RACE", "STRATA1")]
subgroups <- ADAE[, c("SEX", "RACE", "STRATA1")]
subgroups_levels <- list(

RACE = list(
"Total" = "Race",
"AMERICAN INDIAN OR ALASKA NATIVE" = "American",
"WHITE" = "White",
"ASIAN" = "Asian",
"BLACK OR AFRICAN AMERICAN" = "African"

),
STRATA1 = list(

"Total" = "Strata",
"A" = "TypeA",
"B" = "TypeB",
"C" = "Typec"

),
SEX = list(

"Total" = "Sex",
"M" = "Male",
"F" = "Female"

)
)
# Example 1
p1 <- g_ae_sub(id,

arm,
arm_sl,
subgroups,
subgroups_sl,
trt = "ARM A",
ref = "ARM C",
subgroups_levels = subgroups_levels,
arm_n = FALSE



g_ae_sub 9

)
grid::grid.newpage()

# Example 2: display number of patients in each arm
p2 <- g_ae_sub(id,

arm,
arm_sl,
subgroups,
subgroups_sl,
trt = "ARM A",
ref = "ARM C",
subgroups_levels = subgroups_levels,
arm_n = TRUE

)
grid::grid.newpage()

# Example 3: preprocess data to only include treatment and control arm patients
trt <- "ARM A"
ref <- "ARM C"
ADAE <- osprey::rADAE
ADSL <- osprey::rADSL %>% filter(ACTARMCD %in% c(trt, ref))
id <- ADAE$USUBJID
arm <- ADAE$ACTARMCD
arm_sl <- as.character(ADSL$ACTARMCD)
subgroups_sl <- ADSL[, c("SEX", "RACE", "STRATA1")]
subgroups <- ADAE[, c("SEX", "RACE", "STRATA1")]
subgroups_levels <- list(

RACE = list(
"Total" = "Race",
"AMERICAN INDIAN OR ALASKA NATIVE" = "American",
"WHITE" = "White",
"ASIAN" = "Asian",
"BLACK OR AFRICAN AMERICAN" = "African"

),
STRATA1 = list(

"Total" = "Strata",
"A" = "TypeA",
"B" = "TypeB",
"C" = "Typec"

),
SEX = list(

"Total" = "Sex",
"M" = "Male",
"F" = "Female"

)
)
p3 <- g_ae_sub(id,

arm,
arm_sl,
subgroups,
subgroups_sl,
trt,
ref,



10 g_butterfly

subgroups_levels = subgroups_levels,
arm_n = FALSE

)

g_butterfly Butterfly Plot

Description

The butterfly plot is often used in Early Development (ED) and is an opposed barplot that shows
instances of AEs or # of patients by category separated by a dichotomization variable. Each bar can
be color coded according to a variable of choice and sorted according to either alphabetical order or
the maximum count.

Usage

g_butterfly(
category,
right_flag,
left_flag,
id = NULL,
group_names = NULL,
block_count = c("# of patients", "# of AEs"),
block_color = NULL,
facet_rows = NULL,
x_label = block_count,
y_label = "AE Derived Terms",
legend_label = "AETOXGR",
sort_by = c("count", "alphabetical", "right", "left"),
show_legend = TRUE

)

Arguments

category vector of y values

right_flag vector of logical of the same length as category. used to filter category for
the right side of the barplot. to maintain backward compatibility, a vector of 1s
and 0s would also work.

left_flag vector of logical of the same length as category. used to filter category for
the left side of the barplot. to maintain backward compatibility, a vector of 1s
and 0s would also work.

id unique subject identifier variable.

group_names string vector of length 2 with desired names of dichotomization variables re-
quired format : first name corresponds to the name of the right side second
name corresponds to name of the left side default: will extract column names
from group



g_butterfly 11

block_count string - what to count by (ex: # of AEs or # of patients)

block_color vector - color coding of bar segments

facet_rows vector defines what variable is used to split the plot into rows, default here is
NULL

x_label string of text for x axis label, default is block_count

y_label string of text for y axis label, default is AE Derived Terms

legend_label character for legend label, default is "AETOXGR"

sort_by character string that defines the ordering of the class and term variables in the
output table, options: "alphabetical", "count", "left", "right", default
here is set to "count"

show_legend logical(1) of whether color coding legend is included, default here is FALSE

Details

there is no equivalent STREAM output

Value

ggplot object

Author(s)

Carolyn Zhang (zhanc107) <carolyn.zhang@duke.edu>

Ting Qi (qit3) <qit3@gene.com>

Examples

library(dplyr)
library(nestcolor)

ADSL <- osprey::rADSL %>%
select(USUBJID, STUDYID, SEX, ARM, RACE) %>%
dplyr::filter(SEX %in% c("F", "M"))

ADAE <- osprey::rADAE %>% select(USUBJID, STUDYID, AEBODSYS, AETOXGR)

ANL <- left_join(ADAE, ADSL, by = c("STUDYID", "USUBJID"))
ANL <- ANL %>%

dplyr::mutate(flag1 = ifelse(RACE == "ASIAN", 1, 0)) %>%
dplyr::mutate(flag2 = ifelse(SEX == "M", 1, 0))

ANL <- na.omit(ANL)
# Example 1, # of AEs
g_butterfly(

category = ANL$AEBODSYS,
right_flag = ANL$flag1,
left_flag = ANL$flag2,
group_names = c("flag1 Asian", "flag2 M"),
block_count = "# of AEs",
block_color = ANL$AETOXGR,
id = ANL$USUBJID,



12 g_events_term_id

x_label = "# of AEs",
y_label = "AE Body System",
legend_label = "AETOXGR",
sort_by = "count",
show_legend = TRUE

)

# Example 2, # of patients with facet
g_butterfly(

category = ANL$AEBODSYS,
right_flag = ANL$flag1,
left_flag = ANL$flag2,
group_names = c("flag1 Asian", "flag2 M"),
block_count = "# of patients",
block_color = ANL$AETOXGR,
facet_rows = ANL$ARM,
id = ANL$USUBJID,
x_label = "# of patients",
y_label = "AE Derived Terms",
legend_label = "AETOXGR",
sort_by = "count",
show_legend = TRUE

)

g_events_term_id Events by Term Plot

Description

This function plots commonly occurred events by number of unique subjects with events. It creates
basic summary of events and compares event occurrences between comparison and reference arms,
and can be used for events data such as Adverse Events.

Usage

g_events_term_id(
term,
id,
arm,
arm_N,
ref = levels(arm)[1],
trt = levels(arm)[2],
sort_by = c("term", "riskdiff", "meanrisk"),
rate_range = c(0, 1),
diff_range = c(-1, 1),
reversed = FALSE,
conf_level = 0.95,
diff_ci_method = c("wald", "waldcc", "ac", "score", "scorecc", "mn", "mee", "blj",

"ha", "beal"),



g_events_term_id 13

axis_side = c("left", "right"),
color = c(getOption("ggplot2.discrete.colour"), "blue", "red")[1:2],
shape = c(16, 17),
fontsize = 4,
draw = TRUE

)

Arguments

term character or factor vector, or data.frame
Represents events information. term can be a data.frame produced by create_flag_vars,
with each column being a logical event indicator

id (vector)
contains subject identifier. Length of id must be the same as the length or num-
ber of rows of terms. Usually it is ADAE$USUBJID.

arm (factor)
vector that contains arm information in analysis data. For example, ADAE$ACTARMCD.

arm_N (numeric vector)
Contains information of the number of patients in the levels of arm. This is
useful if there are patients that have no adverse events can be accounted for with
this argument.

ref character indicates the name of the reference arm. Default is the first level of
arm.

trt character indicates the name of the treatment arm. Default is the second level
of arm.

sort_by character indicates how each term is sorted in the plot. Choose from "term"
for alphabetic terms, "riskdiff" for risk difference, and "meanrisk" for mean
risk. Default is "term".

rate_range Numeric vector of length 2. Range for overall rate display
diff_range Numeric vector of length 2. Range for rate difference display
reversed logical whether to reverse the sorting by sort_by. Default is FALSE.
conf_level (numeric)

the confidence interval level, default is 0.95.
diff_ci_method (character)

the method used to calculate confidence interval. Default is "wald". Possible
choices are methods supported in BinomDiffCI.

axis_side character the side of the axis label, "left" or "right". Default is "left".
color Color for the plot. vector of length 2. Color for reference and treatment arms

respectively. Default set to c("blue", "red").
shape Shape for the plot. vector of length 2. Shape for reference and treatment arms

respectively. Default set to c(16, 17) per scale_shape.
fontsize (numeric)

font size for the plot. It is the size used in ggplot2 with default unit "mm", if
you want "points" you will need to divide the point number by ggplot2:::.pt.

draw (logical)
whether to draw the plot.



14 g_events_term_id

Details

there is no equivalent STREAM output

Value

grob object

Author(s)

Liming Li (Lil128) <liming.li@roche.com>

Molly He (hey59) <hey59@gene.com>

Examples

library(dplyr)
library(grid)
library(nestcolor)

ADSL <- osprey::rADSL
ADAE <- osprey::rADAE

# add additional dummy causality flags
ADAE <- ADAE %>%

mutate(AEREL1 = (AEREL == "Y" & ACTARM == "A: Drug X")) %>%
mutate(AEREL2 = (AEREL == "Y" & ACTARM == "B: Placebo"))

attr(ADAE[["AEREL1"]], "label") <- "AE related to A: Drug X"
attr(ADAE[["AEREL2"]], "label") <- "AE related to B: Placebo"

term <- ADAE$AEDECOD
id <- ADAE$USUBJID
arm <- ADAE$ACTARMCD
arm_N <- table(ADSL$ACTARMCD)
ref <- "ARM A"
trt <- "ARM C"

# Example 1
p1 <- g_events_term_id(

term,
id,
arm,
arm_N

)
grid::grid.newpage()
grid::grid.draw(p1)

# Example 2
p2 <- g_events_term_id(

term,
id,
arm,
arm_N,



g_heat_bygrade 15

trt = trt,
ref = ref,
sort_by = "riskdiff",
diff_ci_method = "ac",
conf_level = 0.9

)
grid::grid.newpage()
grid::grid.draw(p2)

# Example 3
p3 <- g_events_term_id(

term,
id,
arm,
arm_N,
sort_by = "meanrisk",
axis_side = "right",
fontsize = 5

)
grid::grid.newpage()
grid::grid.draw(p3)

# Example 4
term <- create_flag_vars(ADAE)
g_events_term_id(

term,
id,
arm,
arm_N,
fontsize = 3

)

g_heat_bygrade Heatmap by Grade

Description

This function plots heatmap

Usage

g_heat_bygrade(
id_var,
exp_data,
visit_var,
ongo_var,
anno_data,
anno_var,
heat_data,



16 g_heat_bygrade

heat_color_var,
heat_color_opt = NULL,
conmed_data = NULL,
conmed_var = NULL,
conmed_color_opt = NULL,
xlab = "Visit",
title = NULL

)

Arguments

id_var (character)
name of the column that contains the unique subject identifier shared by all data
Usually it is "USUBJID".

exp_data (data.frame)
exposure data. Usually it is ADEX.

visit_var (character)
name of the column that contains the analysis visit. Usually it is "AVISIT"

ongo_var (character)
name of the column in exp_data that contains the logical variable indicating
whether the treatment is still ongoing. Usually it can be derived from EOSSTT

anno_data (data.frame)
annotation data that contains subject level characteristics. Usually it is ADSL

anno_var (character) a vector of columns name(s) to include for the annotation

heat_data (data.frame)
data frame that contains the information needed for the text over heatmap Usu-
ally it is ADCM.

heat_color_var (character)
name of the column that contains the heat grade

heat_color_opt optional, (character)
a named vector that maps the names to heat colors

conmed_data optional, (data.frame)
concomitant medicine data. Usually it is ADCM default is NULL (no conmed plot-
ted)

conmed_var optional, (character)
concomitant medicine variable name. Must be a column name in conmed_data
when conmed_data is provided. default is NULL (no conmed plotted)

conmed_color_opt

optional, (character)
vector of color name(s) to conmed_data

xlab optional, (character)
string to be shown as x-axis label, default is "Visit"

title (character)
string to be shown as title of the plot. default is NULL (no plot title is displayed)



g_heat_bygrade 17

Author(s)

Nina Qi (qit3) <qit3@gene.com>

Molly He (hey59) <hey59@gene.com>

Examples

library(dplyr)

ADSL <- osprey::rADSL %>% slice(1:30)
ADEX <- osprey::rADEX %>% filter(USUBJID %in% ADSL$USUBJID)
ADAE <- osprey::rADAE %>% filter(USUBJID %in% ADSL$USUBJID)
ADCM <- osprey::rADCM %>% filter(USUBJID %in% ADSL$USUBJID)
# function to derive AVISIT from ADEX
add_visit <- function(data_need_visit) {

visit_dates <- ADEX %>%
filter(PARAMCD == "DOSE") %>%
distinct(USUBJID, AVISIT, ASTDTM) %>%
group_by(USUBJID) %>%
arrange(ASTDTM) %>%
mutate(next_vis = lead(ASTDTM), is_last = ifelse(is.na(next_vis), TRUE, FALSE)) %>%
rename(this_vis = ASTDTM)

data_visit <- data_need_visit %>%
select(USUBJID, ASTDTM) %>%
left_join(visit_dates, by = "USUBJID") %>%
filter(ASTDTM > this_vis & (ASTDTM < next_vis | is_last == TRUE)) %>%
left_join(data_need_visit)

return(data_visit)
}
# add AVISIT in ADAE and ADCM
ADAE <- add_visit(ADAE)
ADCM <- add_visit(ADCM)
exp_data <- ADEX %>%

filter(PARCAT1 == "INDIVIDUAL") %>%
group_by(USUBJID) %>%
# create a shorter subject identifier
mutate(SUBJ = utils::tail(strsplit(USUBJID, "-")[[1]], n = 1)) %>%
mutate(ongo_var = (EOSSTT == "ONGOING")) %>%
ungroup()

anno_data <- ADSL %>%
select(SEX, COUNTRY, USUBJID) %>%
group_by(USUBJID) %>%
mutate(SUBJ = utils::tail(strsplit(USUBJID, "-")[[1]], n = 1)) %>%
ungroup() %>%
select(-USUBJID)

heat_data <- ADAE %>%
select(USUBJID, AVISIT, AETOXGR) %>%
group_by(USUBJID) %>%
mutate(SUBJ = utils::tail(strsplit(USUBJID, "-")[[1]], n = 1)) %>%
ungroup() %>%
select(-USUBJID)

heat_color_opt <- c(
"No Event" = "gray90",



18 g_hy_law

"1" = "lightsteelblue1",
"2" = "steelblue1",
"3" = "steelblue4",
"4" = "maroon",
"5" = "brown4"

)
cmdecod_label <- attr(ADCM[["CMDECOD"]], "label")
ADCM <- ADCM %>%

filter(
CMDECOD == "medname A_1/3" | CMDECOD == "medname A_2/3" | CMDECOD == "medname A_3/3"

) %>%
mutate(CMDECOD = factor(CMDECOD, levels = unique(CMDECOD)))

attr(ADCM[["CMDECOD"]], "label") <- cmdecod_label
conmed_data <- ADCM %>%

group_by(USUBJID) %>%
mutate(SUBJ = utils::tail(strsplit(USUBJID, "-")[[1]], n = 1))

# example plotting conmed
g_heat_bygrade(

id_var = "SUBJ",
exp_data,
visit_var = "AVISIT",
ongo_var = "ongo_var",
anno_data,
anno_var = c("SEX", "COUNTRY"),
heat_data,
heat_color_var = "AETOXGR",
heat_color_opt,
conmed_data,
conmed_var = "CMDECOD",
conmed_color_opt = c("green", "green3", "green4")

)
# example not plotting conmed
g_heat_bygrade(

id_var = "SUBJ",
exp_data,
visit_var = "AVISIT",
ongo_var = "ongo_var",
anno_data,
anno_var = c("SEX", "COUNTRY"),
heat_data,
heat_color_var = "AETOXGR",
heat_color_opt

)

g_hy_law Hy’s Law Plot



g_hy_law 19

Description

A scatter plot typically used to display maximum total bilirubin values (TBL) versus maximum
alanine transaminase (ALT) values.

Usage

g_hy_law(
id,
term,
aval,
arm,
term_selected,
anrhi,
folds = c(3, 2),
text = c("Normal Range", "Hyperbilirubinemia", "Possible Hy's Law Range",

"Temple's Corollary"),
caption = paste("Maximum values are those maximum values that occur post-baseline",

"(no time constraints and not necessarily concurrent events)."),
title = "Max. Total Bilirubin vs. Max. Alanine Aminotransferase",
xlab = "Maximum Alanine Aminotransferase (/ULN)",
ylab = "Maximum Total Bilirubin (/ULN)"

)

Arguments

id unique subject identifier.

term the term of the observation.

aval analysis value.

arm treatment arm. Used as fill color in the plot.

term_selected string vector of length 2 - the two terms selected to be used in the plot. First
value corresponds to parameter plotted on the x-axis. Second value corresponds
to that plotted on the y-axis.

anrhi the high limit of normal range.

folds numeric vector of length two. Indicates the position of the reference lines to be
drawn. Default c(3, 2) corresponds to a line at position 3 on the x-axis and 2 on
the y-axis.

text string vector of length four with the label to be shown on each quadrant. First
value corresponds to label shown in the bottom left quadrant. Subsequent values
move through the graph clockwise.

caption string of text for footnote. Details of methodology can be shown here.

title string of text for plot title.

xlab string of text for x axis label.

ylab string of text for y axis label.



20 g_hy_law

Details

This graphic is based upon the eDISH (evaluation of Drug Induced Serious Hepatotoxicity) plot
of Watkins et. al. in a 2008 publication from Hepatology. Maximum values are defined as the
maximum post-baseline value at any time during the entire length of the observation period. Both
axes are in log scale to control for the dispersion of the data. The values are plotted in ’times upper
limit of normal’ where a value of 1 would mean that the result was normal. Any value above or
below 1 would be considered above the upper limit or normal or below the upper limit of normal
respectively. For instance, a value of 3 would be read as ’3 times the upper limit of normal’.
Reference lines are included to determine various states, based upon clinical interpretation of the
values and includes the following:

• Hyperbilirubinemia TBL at least 2 xULN and ALT less than 3 xULN

• Normal Range TBL <= 1 xULN and ALT <= 1 xULN

• Temple’s Corollary TBL <= 1 xULN and ALT at least 3 xULN

• Possible Hy’s Law TBL at least 2 xULN and ALT at least 3 xULN

This plot can easily be adjusted for other lab parameters and reference ranges as needed. Consulta-
tion with a clinical expert to determine which associations would be clinically meaningful and how
to interpret those associations is recommended.

There is no equivalent STREAM output.

Value

plot object

Author(s)

Katie Withycombe (withycok) <katie.withycombe@roche.com>

Amy Franklin (frankla4) <amy.franklin@roche.com>

William Holmes (holmesw) <william.holmes@roche.com>

Examples

library(dplyr)
library(nestcolor)

# Note: CRP is being used in place of Bilirubin here because this is the only available data
adsl <- osprey::rADSL
adlb <- osprey::rADLB %>% mutate(ANRHI = 50)

# Example 1, - Hy's law template (3 and 2 X ULN)
g_hy_law(

id = adlb$USUBJID,
term = adlb$PARAMCD,
aval = adlb$AVAL,
arm = adlb$ARM,
term_selected = c("ALT", "CRP"),
anrhi = adlb$ANRHI,
folds = c(3, 2),



g_patient_profile 21

text = c("Normal Range", "Hyperbilirubinemia", "Possible Hy's Law Range", "Temple's Corollary"),
caption = paste(

"Maximum values are those maximum values that occur",
"post-baseline (no time constraints and not necessarily concurrent events)."

),
title = "Max. Total Bilirubin vs. Max. Alanine Aminotransferase",
xlab = "Maximum Alanine Aminotransferase (/ULN)",
ylab = "Maximum Total Bilirubin (/ULN)"

)

# Example 2, - change the quadrant lines and labels
g_hy_law(

id = adlb$USUBJID,
term = adlb$PARAMCD,
aval = adlb$AVAL,
arm = adlb$ARM,
term_selected = c("ALT", "CRP"),
anrhi = adlb$ANRHI,
folds = c(10, 15),
text = c("Quadrant 1", "Quadrant 2", "Quadrant 3", "Quadrant 4"),
caption = paste(

"Maximum values are those maximum values that occur",
"post-baseline (no time constraints and not necessarily concurrent events)."

),
title = "Max. Total Bilirubin vs. Max. Alanine Aminotransferase",
xlab = "Maximum Alanine Aminotransferase (/ULN)",
ylab = "Maximum Total Bilirubin (/ULN)"

)

g_patient_profile Patient Profile Plot

Description

Patient profile plot provides detailed information for a specific subject participating in the study. The
plot includes relevant data for one subject that can help correlate adverse events, response, concomi-
tant medications, exposure, and laboratory. The plotting of patient profile is modularized, with each
domain plot generated by function patient_domain_profile. This g_patient_profile function
assembles all requested domain plots into one patient profile. ADSL, ADEX, ADAE, ADRS, ADCM and
ADLB data must be provided. The plot output will not include domains with data unspecified

Usage

g_patient_profile(
ex = NULL,
ae = NULL,
rs = NULL,
cm = NULL,
lb = NULL,



22 g_patient_profile

arrow_end_day,
xlim = c(-28, 365),
xlab = "Study Day",
title = "Patient Profile"

)

Arguments

ex list may contain
• data dataframe for ADEX domain dataset
• var vector to identify each lane of ADEX domain plot

ae list may contain
• data dataframe for ADAE domain dataset
• var vector to identify each lane of ADAE plot
• line_col factor vector to specify color for segments of ADAE plot
• line_col_legend string to be displayed as line color legend title of ADAE

plot
• line_col_opt aesthetic values to map line color values of ADAE plot (named

vector to map color values to each name). If not NULL, please make sure
this contains all possible values for line_col values, otherwise color will
be assigned by ggplot default, please note that NULL needs to be specified

rs list may contain
• data dataframe for ADRS domain dataset
• var vector to identify each lane of ADRS domain plot

cm list may contain
• data dataframe for ADCM domain dataset
• var vector to identify each lane of ADCM domain plot

lb list may contain
• data dataframe for ADLB domain dataset
• var vector to identify each lane of ADLB domain plot

arrow_end_day numeric value indicates the end of arrow when arrows are requested
xlim numeric vector for x-axis limit that will be shared by all domain plots, default is

xlim = c(-28, 365)

xlab string to be shown as x-axis label, default is "Study Day"

title string to be shown as title of the plot, default is "Patient Profile"

Value

plot object

Author(s)

Xuefeng Hou (houx14) <houx14@gene.com>

Molly He (hey59) <hey59@gene.com>

Ting Qi (qit3) <qit3@gene.com>



g_patient_profile 23

See Also

patient_domain_profile

Examples

library(dplyr)
library(nestcolor)
# ADSL
ADSL <- osprey::rADSL %>%

filter(USUBJID == rADSL$USUBJID[1]) %>%
mutate(
TRTSDT = as.Date(TRTSDTM),
max_date = max(as.Date(LSTALVDT), as.Date(DTHDT), na.rm = TRUE),
max_day = as.numeric(as.Date(max_date) - as.Date(TRTSDT)) + 1

) %>%
select(USUBJID, STUDYID, TRTSDT, max_day)

# ADEX
ADEX <- osprey::rADEX %>%

select(USUBJID, STUDYID, ASTDTM, PARCAT2, AVAL, AVALU, PARAMCD)
ADEX <- left_join(ADSL, ADEX, by = c("USUBJID", "STUDYID"))

ADEX <- ADEX %>%
filter(PARAMCD == "DOSE") %>%
arrange(PARCAT2, PARAMCD) %>%
mutate(diff = c(0, diff(AVAL, lag = 1))) %>%
mutate(Modification = case_when(

diff < 0 ~ "Decrease",
diff > 0 ~ "Increase",
diff == 0 ~ "None"

)) %>%
mutate(ASTDT_dur = as.numeric(

as.Date(substr(as.character(ASTDTM), 1, 10)) -
as.Date(TRTSDT) + 1

))

# ADAE
ADAE <- osprey::rADAE %>%

select(USUBJID, STUDYID, AESOC, AEDECOD, AESER, AETOXGR, AEREL, ASTDY, AENDY)
ADAE <- left_join(ADSL, ADAE, by = c("USUBJID", "STUDYID"))

# ADRS
ADRS <- osprey::rADRS %>%

select(USUBJID, STUDYID, PARAMCD, PARAM, AVALC, AVAL, ADY, ADTM)
ADRS <- left_join(ADSL, ADRS, by = c("USUBJID", "STUDYID"))

# ADCM
ADCM <- osprey::rADCM %>%

select(USUBJID, STUDYID, ASTDTM, AENDTM, CMDECOD, ASTDY, AENDY)
ADCM <- left_join(ADSL, ADCM, by = c("USUBJID", "STUDYID"))



24 g_patient_profile

# ADLB
ADLB <- osprey::rADLB %>%

select(
USUBJID, STUDYID, LBSEQ, PARAMCD, BASETYPE, ADTM,
ADY, ATPTN, AVISITN, LBTESTCD, ANRIND

)
ADLB <- left_join(ADSL, ADLB, by = c("USUBJID", "STUDYID"))

ADLB <- ADLB %>%
group_by(USUBJID) %>%
mutate(ANRIND = factor(ANRIND, levels = c("LOW", "NORMAL", "HIGH")))

# Example Patient Profile plot 5 domains
g_patient_profile(

ex = list(
data = ADEX,
var = ADEX$PARCAT2

),
ae = list(

data = ADAE,
var = ADAE$AEDECOD,
line_col = factor(ADAE$AESER),
line_col_legend = "Serious",
line_col_opt = c("Y" = "red", "N" = "blue")

),
rs = list(

data = ADRS,
var = ADRS$PARAMCD

),
cm = list(

data = ADCM,
var = ADCM$CMDECOD

),
lb = list(

data = ADLB,
var = ADLB$LBTESTCD

),
arrow_end_day = ADSL$max_day,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",
title = paste("Patient Profile: ", ADSL$USUBJID)

)

# Example Patient Profile plot without ADCM and ADLB
g_patient_profile(

ex = list(
data = ADEX,
var = ADEX$PARCAT2

),
ae = list(

data = ADAE,
var = ADAE$AEDECOD,
line_col = factor(ADAE$AESER),



g_spiderplot 25

line_col_legend = "Serious",
line_col_opt = c("Y" = "red", "N" = "blue")

),
rs = list(

data = ADRS,
var = ADRS$PARAMCD

),
arrow_end_day = ADSL$max_day,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",
title = paste("Patient Profile: ", ADSL$USUBJID)

)

g_spiderplot Spider Plot

Description

Spider plot is often used in Early Development (ED) and displays individual patient plot of an
endpoint over time by group.

Usage

g_spiderplot(
marker_x,
marker_id,
marker_y,
line_colby = NULL,
line_color_opt = NULL,
marker_shape = NULL,
marker_shape_opt = NULL,
marker_size = 3,
datalabel_txt = NULL,
facet_rows = NULL,
facet_columns = NULL,
vref_line = NULL,
href_line = NULL,
x_label = "Time (Days)",
y_label = "Change (%) from Baseline",
show_legend = FALSE

)

Arguments

marker_x vector of x values (must be in sorted order)

marker_id vector to group the points together (default should be USUBJID)

marker_y vector of y values



26 g_spiderplot

line_colby vector defines by what variable plot is color coded, default here is NULL

line_color_opt vector defines line color, default here is NULL

marker_shape vector defines by what variable points are shape coded, , default here is NULL
marker_shape_opt

vector defines marker shape code, default here is NULL

marker_size size of markers in plot, default here is NULL

datalabel_txt list defines text (at last time point) and flag for an arrow annotation:

• (per defined variable) elements must be labeled txt_ann/mrkr_all/mrkr_ann.
• txt_ann text annotation next to final data point (for text annotation)
• mrkr_all vector of ID’s (for annotation marker)
• mrkr_ann vector of ID’s (subset of mrkr_all) where arrow is desired to

indicate any study interim points. Default here is NULL.

facet_rows dataframe defines what variable is used to split the plot into rows, default here
is NULL.

facet_columns dataframe defines what variable is used to split the plot into columns, default
here is NULL.

vref_line value defines vertical line overlay (can be a vector), default here is NULL.

href_line value defines horizontal line overlay (can be a vector), default here is NULL.

x_label string of text for x axis label, default is time.

y_label string of text for y axis label, default is % change.

show_legend boolean of whether marker legend is included, default here is FALSE.

Details

there is no equivalent STREAM output

Value

ggplot object

Author(s)

Carolyn Zhang (zhanc107) <carolyn.zhang@duke.edu>

Examples

# simple example
library(dplyr)
library(nestcolor)

ADTR <- osprey::rADTR %>% select(STUDYID, USUBJID, ADY, AVISIT, CHG, PCHG, PARAMCD)
ADSL <- osprey::rADSL %>% select(STUDYID, USUBJID, RACE, SEX, ARM)
ANL <- left_join(ADTR, ADSL, by = c("STUDYID", "USUBJID"))
ANL <- ANL %>%
dplyr::filter(PARAMCD == "SLDINV" & AVISIT != "POST-BASELINE MINIMUM") %>%
dplyr::filter(RACE %in% c("WHITE", "ASIAN")) %>%



g_swimlane 27

group_by(USUBJID) %>%
dplyr::arrange(ADY) %>%
dplyr::mutate(

CHG = ifelse(AVISIT == "Screening", 0, CHG),
PCHG = ifelse(AVISIT == "Screening", 0, PCHG)

)
ANL$USUBJID <- substr(ANL$USUBJID, 14, 18)

# Plot 1 - default color and shape mapping
g_spiderplot(

marker_x = ANL$ADY,
marker_id = ANL$USUBJID,
marker_y = ANL$PCHG,
line_colby = ANL$USUBJID,
marker_shape = ANL$USUBJID,
# marker_size = 5,
datalabel_txt = list(txt_ann = ANL$USUBJID),
# facet_rows = data.frame(sex = ANL$SEX),
# facet_columns = data.frame(arm = ANL$ARM),
vref_line = c(42, 86),
href_line = c(-20, 20),
x_label = "Time (Days)",
y_label = "Change (%) from Baseline",
show_legend = TRUE

)

# Plot 2 - with line color mapping
g_spiderplot(

marker_x = ANL$AVISIT,
marker_id = ANL$USUBJID,
marker_y = ANL$CHG,
line_colby = ANL$RACE,
line_color_opt = c("WHITE" = "red", "ASIAN" = "blue"),
marker_shape = ANL$USUBJID,
x_label = "Visit",
y_label = "Change from Baseline",
show_legend = TRUE

)

g_swimlane Swimlane Plot

Description

Swimlane plot is often used in Early Development (ED) and displays individual patient bar plot
with markers of events and patient level annotation

Usage

g_swimlane(



28 g_swimlane

bar_id,
bar_length,
sort_by = NULL,
col_by = NULL,
marker_id = NULL,
marker_pos = NULL,
marker_shape = NULL,
marker_shape_opt = NULL,
marker_color = NULL,
marker_color_opt = NULL,
anno_txt = NULL,
xref_line = NULL,
xtick_at = waiver(),
xlab,
title

)

Arguments

bar_id vector of IDs to identify each bar

bar_length numeric vector to be plotted as length for each bar

sort_by vector to sort bars

col_by vector to color bars

marker_id vector of IDs to identify markers within each bar. Default is the same as bar_id.

marker_pos numeric vector to specify position for each marker point

marker_shape vector to specify shape for markers
marker_shape_opt

aesthetic values to map shape values (named vector to map shape values to each
name)

marker_color vector to specify color for markers
marker_color_opt

aesthetic values to map shape values (named vector to map shape values to each
name)

anno_txt dataframe of subject-level variables to be displayed as annotation on the left

xref_line numeric vector to plot reference lines

xtick_at optional break interval of bar length axis

xlab label for bar length

title string to be displayed as plot title

Value

plot object

Author(s)

Ting Qi (qit3) <qit3@gene.com>



g_swimlane 29

Examples

# Example 1
library(dplyr)
library(nestcolor)

ADSL <- osprey::rADSL[1:20, ]
ADRS <- filter(rADRS, PARAMCD == "OVRINV")
ANL <- left_join(ADSL, ADRS, by = c("STUDYID", "USUBJID"), multiple = "all")
anno_txt <- ADSL[, c("ARMCD", "SEX")]

g_swimlane(
bar_id = ADSL$USUBJID,
bar_length = as.integer(ADSL$TRTEDTM - ADSL$TRTSDTM),
sort_by = ADSL$ARM,
col_by = ADSL$ARM,
marker_id = ANL$USUBJID,
marker_pos = ANL$ADY,
marker_shape = ANL$AVALC,
marker_shape_opt = c("CR" = 16, "PR" = 17, "SD" = 18, "PD" = 15, "NE" = 4),
marker_color = NULL,
marker_color_opt = NULL,
anno_txt = anno_txt,
xref_line = c(50, 100),
xtick_at = waiver(),
xlab = "Time from First Treatment (Day)",
title = "Swimlane Plot"

)

# Example 2
library(dplyr)
library(nestcolor)

ADSL <- osprey::rADSL[1:20, ]
ADRS <- osprey::rADRS

anno_txt_vars <- c("ARMCD", "SEX", "COUNTRY")
anno_txt <- ADSL[, anno_txt_vars]

# markers from ADRS
ADRS <- dplyr::filter(ADRS, PARAMCD == "OVRINV") %>% select(USUBJID, ADY, AVALC)

# markers from ADSL - discontinuation
ADS <- ADSL %>%

dplyr::filter(EOSSTT == "Discontinued" | DCSREAS != "") %>%
select(USUBJID, EOSDY, DCSREAS) %>%
dplyr::rename(ADY = EOSDY, AVALC = DCSREAS)

# combine ADRS with ADS records as one data for markers and join with ADSL
ANL <- inner_join(ADSL, rbind(ADRS, ADS), by = "USUBJID", multiple = "all")

g_swimlane(
bar_id = sub(".*-", "", ADSL$USUBJID),



30 g_waterfall

bar_length = as.integer(ADSL$TRTEDTM - ADSL$TRTSDTM),
sort_by = NULL,
col_by = ADSL$ARMCD,
marker_id = sub(".*-", "", ANL$USUBJID),
marker_pos = ANL$ADY,
marker_shape = ANL$AVALC,
marker_shape_opt = c(

"CR" = 16, "PR" = 17, "SD" = 18, "PD" = 15, "NE" = 0,
"Adverse Event" = 7, "Death" = 8, "Physician Decision" = 9, "Progressive Disease" = 10,
"Symptomatic Deterioation" = 11, "Withdrawal by Subject" = 12

),
marker_color = ANL$AVALC,
marker_color_opt = c(

"CR" = "green", "PR" = "blue", "SD" = "yellow", "PD" = "red",
"NE" = "grey", "Adverse Event" = "orange", "Death" = "black", "Physician Decision" = "navy",
"Progressive Disease" = "purple", "Symptomatic Deterioation" = "cyan",
"Withdrawal by Subject" = "darkred"

),
anno_txt = anno_txt,
xref_line = c(50, 100),
xtick_at = waiver(),
xlab = "Time from First Treatment (Day)",
title = "Swimlane Plot"

)

g_waterfall Waterfall Plot

Description

Waterfall plot is often used in Early Development (ED) to present each individual patient’s best
response to a particular drug based on a parameter.

Usage

g_waterfall(
bar_id,
bar_height,
sort_by = NULL,
col_by = NULL,
bar_color_opt = NULL,
anno_txt = NULL,
href_line = NULL,
facet_by = NULL,
show_datavalue = TRUE,
add_label = NULL,
gap_point = NULL,
ytick_at = 20,
y_label = "Best % Change from Baseline",



g_waterfall 31

title = "Waterfall Plot"
)

Arguments

bar_id (vector)
contains IDs to identify each bar

bar_height numeric vector to be plotted as height of each bar

sort_by (vector)
used to sort bars, default is NULL in which case bars are ordered by decreasing
height

col_by (vector)
used to color bars, default is NULL in which case bar_id is taken if the argument
bar_color_opt is provided

bar_color_opt (vector)
aesthetic values to map color values (named vector to map color values to each
name). If not NULL, please make sure this contains all possible values for col_by
values, otherwise default ggplot color will be assigned, please note that NULL
needs to be specified in this case

anno_txt (dataframe)
contains subject-level variables to be displayed as annotation below the waterfall
plot, default is NULL

href_line (numeric vector)
to plot horizontal reference lines, default is NULL

facet_by (vector)
to facet plot and annotation table, default is NULL

show_datavalue (boolean)
controls whether value of bar height is shown, default is TRUE

add_label (vector)
of one subject-level variable to be added to each bar except for bar_height, de-
fault is NULL

gap_point (numeric)
value for adding bar break when some bars are significantly higher than others,
default is NULL

ytick_at (numeric)
optional bar height axis interval, default is 20

y_label (string)
label for bar height axis, default is "Best % Change from Baseline"

title (string)
displayed as plot title, default is "Waterfall Plot"

Value

plot object



32 g_waterfall

Author(s)

Xuefeng Hou (houx14) <houx14@gene.com>

Ting Qi (qit3) <qit3@gene.com>

Examples

library(tidyr)
library(dplyr)
library(nestcolor)

g_waterfall(
bar_id = letters[1:3], bar_height = c(3, 5, -1),
bar_color_opt = c("red", "green", "blue")

)

# Example 1
ADSL <- osprey::rADSL[1:15, ]
ADRS <- osprey::rADRS %>%

filter(USUBJID %in% ADSL$USUBJID)
ADTR <- osprey::rADTR %>%

filter(USUBJID %in% ADSL$USUBJID) %>%
select(USUBJID, PCHG) %>%
group_by(USUBJID) %>%
slice(which.min(PCHG))

TR_SL <- inner_join(ADSL, ADTR, by = "USUBJID", multiple = "all")

SUB_ADRS <- ADRS %>%
filter(PARAMCD == "BESRSPI" | PARAMCD == "INVET") %>%
select(USUBJID, PARAMCD, AVALC, AVISIT, ADY) %>%
spread(PARAMCD, AVALC)

ANL <- TR_SL %>%
left_join(SUB_ADRS, by = "USUBJID", multiple = "all") %>%
mutate(TRTDURD = as.integer(TRTEDTM - TRTSDTM) + 1)

anno_txt_vars <- c("TRTDURD", "BESRSPI", "INVET", "SEX", "BMRKR2")

g_waterfall(
bar_height = ANL$PCHG,
bar_id = sub(".*-", "", ANL$USUBJID),
col_by = ANL$SEX,
sort_by = ANL$ARM,
# bar_color_opt = c("F" = "red", "M" = "green", "U" = "blue"),
anno_txt = ANL[, anno_txt_vars],
facet_by = NULL,
href_line = c(-30, 20),
add_label = ANL$BESRSPI,
ytick_at = 20,
gap_point = NULL,
show_datavalue = TRUE,
y_label = "Best % Change from Baseline",



patient_domain_profile 33

title = "Waterfall Plot"
)

# Example 2 facetting
anno_txt_vars <- c("BESRSPI", "INVET")

g_waterfall(
bar_id = sub(".*-", "", ANL$USUBJID),
bar_height = ANL$PCHG,
sort_by = ANL$COUNTRY,
col_by = ANL$SEX,
bar_color_opt = c("F" = "tomato", "M" = "skyblue3", "U" = "darkgreen"),
anno_txt = ANL[, anno_txt_vars],
facet_by = ANL$STRATA2,
href_line = c(-30, 20),
add_label = ANL$BESRSPI,
ytick_at = 20,
gap_point = 260,
y_label = "Best % Change from Baseline",
title = "Waterfall Plot"

)

# Example 3 extreme value
ANL$PCHG[3] <- 99
ANL$PCHG[5] <- 199
ANL$PCHG[7] <- 599
ANL$BESRSPI[3] <- "PD"
ANL$BESRSPI[5] <- "PD"
ANL$BESRSPI[7] <- "PD"

g_waterfall(
bar_id = sub(".*-", "", ANL$USUBJID),
bar_height = ANL$PCHG,
sort_by = ANL$ARM,
col_by = ANL$SEX,
bar_color_opt = c("F" = "tomato", "M" = "skyblue3", "U" = "darkgreen"),
anno_txt = ANL[, anno_txt_vars],
facet_by = NULL,
href_line = c(-30, 20),
add_label = ANL$BESRSPI,
ytick_at = 20,
gap_point = 260,
y_label = "Best % Change from Baseline",
title = "Waterfall Plot"

)

patient_domain_profile

Patient Domain Profile



34 patient_domain_profile

Description

Patient domain profile provides information for a specific subject that participated in the study.
The plot includes relevant data for one subject in a user specified domain, including adverse events
(ADAE), response (ADRS), concomitant medications (ADCM), exposure (ADEX), and laboratory (ADLB).

Usage

patient_domain_profile(
domain = NULL,
var_names,
marker_pos,
arrow_end,
xtick_at = waiver(),
line_col_list = NULL,
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 0,
marker_col_list = NULL,
marker_shape_list = NULL,
show_days_label = TRUE,
xlim = c(-28, max(marker_pos) + 5),
xlab = NULL,
show_title = TRUE,
title = NULL

)

Arguments

domain string of domain name to be shown as y-axis label, default is NULL (no y-axis
label shown)

var_names character vector to identify each lane

marker_pos Depending on the domain, this can be

• marker position numeric vector for domains ADEX, ADLB, and ADRS

• numeric data frame with two columns, start and end time marker position,
for domains ADAE and ADCM

arrow_end numeric value indicates the end of arrow when arrows are requested

xtick_at numeric vector with the locations of the x-axis tick marks

line_col_list a list may contain

• line_col: factor vector to specify color for segments , default is NULL (no
line color is specified)

• line_col_opt aesthetic values to map color values (named vector to map
color values to each name). If not NULL, please make sure this contains all
possible values for line_col values, otherwise color will be assigned by
hcl.colors



patient_domain_profile 35

• line_col_legend: a string to be displayed as line color legend title when
line_col is specified, default is NULL (no legend title is displayed)

line_width numeric value for segment width, default is line_width = 1

arrow_size numeric value for arrow size, default is arrow_size = 0.1

no_enddate_extention

numeric value for extending the arrow when end date is missing for ADAE or
ADCM domain. Default is no_enddate_extention = 0.

marker_col_list

a list may contain

• marker_col a factor vector to specify color for markers, default is NULL (no
color markers is specified)

• marker_col_opt aesthetic values to map color values (named vector to
map color values to each name) If not NULL, please make sure this contains
all possible values for marker_col values, otherwise color will be assigned
by hcl.colors

• marker_col_legend a string to be displayed as marker color legend title,
default is NULL (no legend title is displayed)

marker_shape_list

a list may contain

• marker_shape factor vector to specify shape for markers, default is NULL
(no shape marker is specified)

• marker_shape_opt aesthetic values to map shape values (named vector
to map shape values to each name). If not NULL, please make sure this
contains all possible values for marker_shape values, otherwise shape will
be assigned by ggplot default

• marker_shape_legend string to be displayed as marker shape legend title,
default is NULL (no legend title is displayed)

show_days_label

boolean value for showing y-axis label, default is TRUE

xlim numeric vector for x-axis limit, default is xlim = c(-28, max(marker_pos) +
5)

xlab string to be shown as x-axis label, default is "Study Day"

show_title boolean value for showing title of the plot, default is TRUE

title string to be shown as title of the plot, default is NULL (no plot title is displayed)

Value

plot object

Author(s)

Xuefeng Hou (houx14) <houx14@gene.com>

Tina Cho (chot) <tina.cho@roche.com>



36 patient_domain_profile

Molly He (hey59) <hey59@gene.com>

Ting Qi (qit3) <qit3@gene.com>

Examples

library(dplyr)

# ADSL
ADSL <- osprey::rADSL %>%

filter(USUBJID == rADSL$USUBJID[1]) %>%
mutate(

TRTSDT = as.Date(TRTSDTM),
max_date = max(as.Date(LSTALVDT), as.Date(DTHDT), na.rm = TRUE),
max_day = as.numeric(as.Date(max_date) - as.Date(TRTSDT)) + 1

) %>%
select(USUBJID, STUDYID, TRTSDT, max_day)

# Example 1 Exposure "ADEX"
ADEX <- osprey::rADEX %>%

select(USUBJID, STUDYID, ASTDTM, PARCAT2, AVAL, AVALU, PARAMCD)
ADEX <- left_join(ADSL, ADEX, by = c("USUBJID", "STUDYID"))
ADEX <- ADEX %>%

filter(PARAMCD == "DOSE") %>%
arrange(PARCAT2, PARAMCD) %>%
mutate(diff = c(0, diff(AVAL, lag = 1))) %>%
mutate(

Modification = case_when(
diff < 0 ~ "Decrease",
diff > 0 ~ "Increase",
diff == 0 ~ "None"

)
) %>%
mutate(

ASTDT_dur = as.numeric(
as.Date(

substr(as.character(ASTDTM), 1, 10)
) - as.Date(TRTSDT) + 1

)
)

p1 <- patient_domain_profile(
domain = "Exposure (ADEX)",
var_names = ADEX$PARCAT2,
marker_pos = ADEX$ASTDT_dur,
arrow_end = ADSL$max_day,
xtick_at = waiver(),
line_col_list = NULL,
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 0,



patient_domain_profile 37

marker_col_list = list(
marker_col = factor(ADEX$Modification),
marker_col_opt = c("Increase" = "red", "Decrease" = "green", "None" = "blue"),
marker_col_legend = NULL

),
marker_shape_list = list(

marker_shape = factor(ADEX$Modification),
marker_shape_opt = c("Increase" = 24, "Decrease" = 25, "None" = 23),
marker_shape_legend = "Dose Modification"

),
show_days_label = TRUE,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",
title = paste("Patient Profile: ", ADSL$USUBJID)

)
p1

# Example 2 Adverse Event "ADAE"
# Note that ASTDY is represented by a circle and AENDY is represented by a square.
# If AENDY and ASTDY occur on the same day only AENDY will be shown.

# Adverse Event ADAE
ADAE <- osprey::rADAE %>%

select(USUBJID, STUDYID, AESOC, AEDECOD, AESER, AETOXGR, AEREL, ASTDY, AENDY)
ADAE <- left_join(ADSL, ADAE, by = c("USUBJID", "STUDYID"))

p2 <- patient_domain_profile(
domain = "Adverse Event (ADAE)",
var_names = ADAE$AEDECOD,
marker_pos = ADAE[, c("ASTDY", "AENDY")],
arrow_end = ADSL$max_day,
xtick_at = waiver(),
line_col_list = list(

line_col = ADAE$AESER,
line_col_legend = "Serious",
line_col_opt = c("blue", "green")

),
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 0,
marker_col_list = list(

marker_col = factor(ADAE$AETOXGR),
marker_col_opt = c("3" = "yellow", "4" = "red"),
marker_col_legend = NULL

),
marker_shape_list = list(

marker_shape = NULL,
marker_shape_opt = NULL,
marker_shape_legend = "Grade"

),
show_days_label = TRUE,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",



38 patient_domain_profile

title = paste("Patient Profile: ", ADSL$USUBJID)
)
p2

# Example 3 Tumor Response "ADRS"
ADRS <- osprey::rADRS %>%

select(USUBJID, STUDYID, PARAMCD, PARAM, AVALC, AVAL, ADY, ADTM)
ADRS <- left_join(ADSL, ADRS, by = c("USUBJID", "STUDYID"))
p3 <- patient_domain_profile(

domain = "Tumor Response (ADRS)",
var_names = ADRS$PARAMCD,
marker_pos = ADRS$ADY,
arrow_end = ADSL$max_day,
xtick_at = waiver(),
line_col_list = NULL,
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 0,
marker_col_list = list(

marker_col = factor(ADRS$AVALC),
marker_col_opt = c(

"CR" = "green", "PR" = "blue",
"SD" = "yellow", "PD" = "red", "NE" = "pink",
"Y" = "lightblue", "N" = "darkred"

),
marker_col_legend = NULL

),
marker_shape_list = list(

marker_shape = factor(ADRS$AVALC),
marker_shape_opt = c(

"CR" = 21, "PR" = 24,
"SD" = 23, "PD" = 22, "NE" = 14,
"Y" = 11, "N" = 8

),
marker_shape_legend = "Response"

),
show_days_label = TRUE,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",
title = paste("Patient Profile: ", ADSL$USUBJID)

)
p3

# Example 4 Concomitant Med "ADCM"
ADCM <- osprey::rADCM %>%

select(USUBJID, STUDYID, ASTDTM, AENDTM, CMDECOD, ASTDY, AENDY)
ADCM <- left_join(ADSL, ADCM, by = c("USUBJID", "STUDYID"))
p4 <- patient_domain_profile(

domain = "Concomitant Med (ADCM)",
var_names = ADCM$CMDECOD,
marker_pos = ADCM[, c("ASTDY", "AENDY")],
arrow_end = ADSL$max_day,
xtick_at = waiver(),



patient_domain_profile 39

line_col_list = list(line_col_opt = "orange"),
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 50,
marker_col_list = list(marker_col_opt = "orange"),
marker_shape_list = NULL,
show_days_label = TRUE,
xlim = c(-28, ADSL$max_day),
xlab = "Study Day",
title = paste("Patient Profile: ", ADSL$USUBJID)

)
p4

# Example 5 Laboratory "ADLB"
ADLB <- osprey::rADLB %>%

select(
USUBJID, STUDYID, LBSEQ, PARAMCD, BASETYPE,
ADTM, ADY, ATPTN, AVISITN, LBTESTCD, ANRIND

)
ADLB <- left_join(ADSL, ADLB, by = c("USUBJID", "STUDYID"))

ADLB <- ADLB %>%
group_by(USUBJID) %>%
mutate(ANRIND = factor(ANRIND, levels = c("LOW", "NORMAL", "HIGH")))

p5 <- patient_domain_profile(
domain = "Laboratory (ADLB)",
var_names = ADLB$LBTESTCD,
marker_pos = ADLB$ADY,
arrow_end = ADSL$max_day,
xtick_at = waiver(),
line_col_list = NULL,
line_width = 1,
arrow_size = 0.1,
no_enddate_extention = 0,
marker_col_list = list(

marker_col = factor(ADLB$ANRIND),
marker_col_opt = c(

"HIGH" = "red", "LOW" = "blue",
"NORMAL" = "green", "NA" = "green"

)
),
marker_shape_list = list(

marker_shape = factor(ADLB$ANRIND),
marker_shape_opt = c(

"HIGH" = 24, "LOW" = 25,
"NORMAL" = 23, "NA" = 23

),
marker_shape_legend = "Labs Abnormality"

),
show_days_label = TRUE,
xlim = c(-30, ADSL$max_day),
xlab = "Study Day",



40 spiderplot_simple

title = paste("Patient Profile: ", ADSL$USUBJID)
)
p5

spiderplot_simple Simple spider plot

Description

Description of this plot

Usage

spiderplot_simple(
anl,
byvar = "USUBJID",
days = "TRTDURD",
mes_value = "PARAM",
group_col = "USUBJID",
baseday = 0

)

Arguments

anl The analysis data frame

byvar Analysis dataset

days Variable with time in days

mes_value Variable with measurement

group_col Variable to color the individual lines and id in plot

baseday Numeric Value, points with only smaller values will be cut out

Value

ggplot object

Author(s)

Mika Maekinen

Examples

library(dplyr)
library(nestcolor)

ADSL <- osprey::rADSL[1:15, ]
ADTR <- osprey::rADTR
ANL <- left_join(ADSL, ADTR)



stream_filter 41

ANL %>%
dplyr::filter(ANL01FL == "Y" & PARAMCD == "SLDINV") %>%
spiderplot_simple(group_col = "SEX", days = "ADY", mes_value = "AVAL")

stream_filter Applies STREAM style filtering to datasets

Description

One of slref or anl need to be specified. The conversion from SAS code in filters dataset may not
work in all cases. In case of failure a sensible error message should be returned.

Usage

stream_filter(
slref = NULL,
anl = NULL,
filters,
suffix,
slref_keep = NULL,
usubjid = "USUBJID"

)

Arguments

slref The subject level data frame (typically ADSL)

anl The analysis data frame

filters The name of the filters dataset

suffix The suffix to apply in quotes (e.g. "ITT_PFSINV")

slref_keep Variables to keep from slref (e.g. c("REGION", "SEX"))

usubjid The unique subject identifier variable in quotes (e.g. "USUBJID")

Value

dataframe object

Author(s)

Iain Bennett



42 stream_filter_convwhere

Examples

ADSL <- osprey::rADSL
ADTTE <- osprey::rADTTE
filters <- as.data.frame(rbind(

c(ID = "IT", FLTTARGET = "SLREF", FLTWHERE = "where 1 eq 1"),
c(ID = "BIO", FLTTARGET = "SLREF", FLTWHERE = "where BMRKR1 ge 4.3"),
c(ID = "M", FLTTARGET = "SLREF", FLTWHERE = "where SEX eq 'M'"),
c(ID = "PFS", FLTTARGET = "ANL", FLTWHERE = "where PARAMCD eq 'PFS'"),
c(ID = "OS", FLTTARGET = "ANL", FLTWHERE = "where PARAMCD eq 'OS'")

))

ANL <- stream_filter(
slref = ADSL,
anl = ADTTE,
suffix = "IT_PFS_BIO",
filters = filters

)

stream_filter_convwhere

Convert SAS code to R code

Description

Will convert following SAS operators: eq, =, le, lt, ge, gt, index Will convert following
logic: and, or, () Will convert all unquoted values to upper case (assumed to be variable names) All
quoted values will be returned with single quotes - may fail if have quotes within quotes

Usage

stream_filter_convwhere(x)

Arguments

x a character string of SAS code

Value

a character string of R code

Author(s)

Iain Bennett

Examples

stream_filter_convwhere(x = "where X in (1 2 3 4) and Y gt 4 ")
stream_filter_convwhere(x = "where X = \"fred\" and Y gt 4 ")



stream_filter_index 43

stream_filter_index Replicates the use of index function in SAS for logic options

Description

Assumption is that use in filters is to only resolve true vs false Primarily for use with stream_filter
and related stream_filter_convwhere functions

Usage

stream_filter_index(string1, string2)

Arguments

string1 The string to search within - can be a vector

string2 The string to search for - must have length 1

Value

boolean indicator

Author(s)

Iain Bennett

Examples

AEACN <- c("DRUG MODIFIED", "DRUG STOPPED", "DOSE/DRUG MODIFIED")
stream_filter_index(AEACN, "DRUG MODIFIED")



Index

as_pdf, 2

BinomDiffCI, 7, 13

create_flag_vars, 3

g_ae_sub, 6
g_butterfly, 10
g_events_term_id, 12
g_heat_bygrade, 15
g_hy_law, 18
g_patient_profile, 21, 21
g_spiderplot, 25
g_swimlane, 27
g_waterfall, 30
grobs2pdf, 5
grobs2pdf(), 3

hcl.colors, 34, 35

patient_domain_profile, 21, 23, 33

scale_shape, 13
spiderplot_simple, 40
stream_filter, 41
stream_filter_convwhere, 42
stream_filter_index, 43

44


	as_pdf
	create_flag_vars
	grobs2pdf
	g_ae_sub
	g_butterfly
	g_events_term_id
	g_heat_bygrade
	g_hy_law
	g_patient_profile
	g_spiderplot
	g_swimlane
	g_waterfall
	patient_domain_profile
	spiderplot_simple
	stream_filter
	stream_filter_convwhere
	stream_filter_index
	Index

