Package: rbmi 1.3.0

Craig Gower-Page

rbmi: Reference Based Multiple Imputation

Implements standard and reference based multiple imputation methods for continuous longitudinal endpoints (Gower-Page et al. (2022) <doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.

Authors:Craig Gower-Page [aut, cre], Alessandro Noci [aut], Marcel Wolbers [ctb], F. Hoffmann-La Roche AG [cph, fnd]

rbmi_1.3.0.tar.gz
rbmi_1.3.0.zip(r-4.5)rbmi_1.3.0.zip(r-4.4)rbmi_1.3.0.zip(r-4.3)
rbmi_1.3.0.tgz(r-4.4-any)rbmi_1.3.0.tgz(r-4.3-any)
rbmi_1.3.0.tar.gz(r-4.5-noble)rbmi_1.3.0.tar.gz(r-4.4-noble)
rbmi_1.3.0.tgz(r-4.4-emscripten)rbmi_1.3.0.tgz(r-4.3-emscripten)
rbmi.pdf |rbmi.html
rbmi/json (API)
NEWS

# Install 'rbmi' in R:
install.packages('rbmi', repos = c('https://insightsengineering.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/insightsengineering/rbmi/issues

Datasets:

On CRAN:

8.25 score 17 stars 1 packages 20 scripts 584 downloads 35 exports 45 dependencies

Last updated 1 months agofrom:5c49399c54 (on v1.3.0). Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:add_classanalyseancovaas_classas_vcovdelta_templatedrawsexpandexpand_locfextract_imputed_dfsfill_locfget_example_datagetStrategieshas_classimputelocflongDataConstructormake_rbmi_clustermethod_approxbayesmethod_bayesmethod_bmlmimethod_condmeanpoolpool_internalset_simul_parsset_varssimulate_dataStackstrategy_CIRstrategy_CRstrategy_JRstrategy_LMCFstrategy_MARvalidatevalidate_analyse_pars

Dependencies:assertthatbackportsbriocallrcheckmateclicrayondescdiffobjdigestevaluatefansifsgenericsgluejsonlitelatticelifecyclemagrittrMatrixmmrmnlmepillarpkgbuildpkgconfigpkgloadpraiseprocessxpsR6rbibutilsRcppRcppEigenRdpackrlangrprojrootstringistringrtestthattibbleTMButf8vctrswaldowithr

rbmi: Advanced Functionality

Rendered fromadvanced.html.asisusingR.rsp::asison Nov 15 2024.

Last update: 2022-03-02
Started: 2022-03-02

rbmi: Inference with Conditional Mean Imputation

Rendered fromCondMean_Inference.html.asisusingR.rsp::asison Nov 15 2024.

Last update: 2024-01-25
Started: 2024-01-25

rbmi: Quickstart

Rendered fromquickstart.html.asisusingR.rsp::asison Nov 15 2024.

Last update: 2022-03-02
Started: 2022-03-02

rbmi: Statistical Specifications

Rendered fromstat_specs.html.asisusingR.rsp::asison Nov 15 2024.

Last update: 2022-03-02
Started: 2022-03-02

Readme and manuals

Help Manual

Help pageTopics
Add a classadd_class
Adjust trajectories due to the intercurrent event (ICE)adjust_trajectories
Adjust trajectory of a subject's outcome due to the intercurrent event (ICE)adjust_trajectories_single
Analyse Multiple Imputed Datasetsanalyse
Analysis of Covarianceancova
Implements an Analysis of Covariance (ANCOVA)ancova_single
Antidepressant trial dataantidepressant_data
Applies delta adjustmentapply_delta
Construct an 'analysis' objectas_analysis
as_ascii_tableas_ascii_table
Set Classas_class
as_cropped_charas_cropped_char
Convert object to dataframeas_dataframe
Creates a 'draws' objectas_draws
Create an imputation objectas_imputation
Convert indicator to indexas_indices
Creates a "MMRM" ready datasetas_mmrm_df
Create MMRM formulaas_mmrm_formula
Expand 'data.frame' into a design matrixas_model_df
Creates a simple formula object from a stringas_simple_formula
As arrayas_stan_array
Create vector of Stratasas_strata
Assert that all variables exist within a datasetassert_variables_exist
Convert character variables to factorchar2fct
Diagnostics of the MCMC based on ESScheck_ESS
Diagnostics of the MCMC based on HMC-related measures.check_hmc_diagn
Diagnostics of the MCMCcheck_mcmc
Compute covariance matrix for some reference-based methods (JR, CIR)compute_sigma
Convert list of 'imputation_list_single()' objects to an 'imputation_list_df()' object (i.e. a list of 'imputation_df()' objects's)convert_to_imputation_list_df
Calculate delta from a lagged scale coefficientd_lagscale
Create a delta 'data.frame' templatedelta_template
Fit the base imputation model and get parameter estimatesdraws draws.approxbayes draws.bayes draws.bmlmi draws.condmean
Evaluate a call to mmrmeval_mmrm
Expand and fill in missing 'data.frame' rowsexpand expand_locf fill_locf
Extract Variables from string vectorextract_covariates
Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy)extract_data_nmar_as_na
Extract draws from a 'stanfit' objectextract_draws
Extract imputed datasetextract_imputed_df
Extract imputed datasetsextract_imputed_dfs
Extract parameters from a MMRM modelextract_params
Fit the base imputation model using a Bayesian approachfit_mcmc
Fit a MMRM modelfit_mmrm
Generate data for a single groupgenerate_data_single
Creates a stack object populated with bootstrapped samplesget_bootstrap_stack
Derive conditional multivariate normal parametersget_conditional_parameters
Get delta utility variablesget_delta_template
Fit the base imputation model on bootstrap samplesget_draws_mle
Extract the Effective Sample Size (ESS) from a 'stanfit' objectget_ESS
Von Hippel and Bartlett pooling of BMLMI methodget_ests_bmlmi
Simulate a realistic example datasetget_example_data
Creates a stack object populated with jackknife samplesget_jackknife_stack
Fit MMRM and returns parameter estimatesget_mmrm_sample
Determine patients missingness groupget_pattern_groups
Get Pattern Summaryget_pattern_groups_unique
Expected Pool Componentsget_pool_components
Derive visit distribution parametersget_visit_distribution_parameters
Get imputation strategiesgetStrategies
Does object have a class ?has_class
if elseife
Create a valid 'imputation_df' objectimputation_df
List of imputations_dfimputation_list_df
A collection of 'imputation_singles()' grouped by a single subjid IDimputation_list_single
Create a valid 'imputation_single' objectimputation_single
Create imputed datasetsimpute impute.condmean impute.random
Impute data for a single subjectimpute_data_individual
Create imputed datasetsimpute_internal
Sample outcome valueimpute_outcome
invertinvert
Invert and derive indexesinvert_indexes
Is value absentis_absent
Is character or factoris_char_fact
Is single characteris_char_one
Is package in development mode?is_in_rbmi_development
Is character, factor or numericis_num_char_fact
Last Observation Carried Forwardlocf
R6 Class for Storing / Accessing & Sampling Longitudinal DatalongDataConstructor
Calculate design vector for the lsmeansls_design ls_design_counterfactual ls_design_equal ls_design_proportional
Least Square Meanslsmeans
Create a 'rbmi' ready clustermake_rbmi_cluster
Set the multiple imputation methodologymethod method_approxbayes method_bayes method_bmlmi method_condmean
Parallelise Lapplypar_lapply
Calculate parametric confidence intervalsparametric_ci
Pool analysis results obtained from the imputed datasetsas.data.frame.pool pool print.pool
Bootstrap Pooling via normal approximationpool_bootstrap_normal
Bootstrap Pooling via Percentilespool_bootstrap_percentile
Internal Pool Methodspool_internal pool_internal.bmlmi pool_internal.bootstrap pool_internal.jackknife pool_internal.rubin
Prepare input data to run the Stan modelprepare_stan_data
Print 'analysis' objectprint.analysis
Print 'draws' objectprint.draws
Print 'imputation' objectprint.imputation
R6 Class for printing current sampling progressprogressLogger
P-value of percentile bootstrappval_percentile
QR decompositionQR_decomp
Construct random effects formularandom_effects_expr
rbmi settingsrbmi-settings set_options
Capture all Outputrecord
recursive_reducerecursive_reduce
Remove subjects from dataset if they have no observed valuesremove_if_all_missing
Barnard and Rubin degrees of freedom adjustmentrubin_df
Combine estimates using Rubin's rulesrubin_rules
Sample Patient Idssample_ids
Create and validate a 'sample_list' objectsample_list
Sample random values from the multivariate normal distributionsample_mvnorm
Create object of 'sample_single' classsample_single
R6 Class for scaling (and un-scaling) design matricesscalerConstructor
Set simulation parameters of a study group.set_simul_pars
Set key variablesset_vars
Generate datasimulate_data
Simulate drop-outsimulate_dropout
Simulate intercurrent eventsimulate_ice
Create simulated datasetsas_vcov simulate_test_data
Sort 'data.frame'sort_by
Transform array into list of arrayssplit_dim
Split a flat list of 'imputation_single()' into multiple 'imputation_df()''s by IDsplit_imputations
R6 Class for a FIFO stackStack
Does a string contain a substringstr_contains
Strategiesstrategies strategy_CIR strategy_CR strategy_JR strategy_LMCF strategy_MAR
string_padstring_pad
Transpose imputationstranspose_imputations
Transpose results objecttranspose_results
Transpose samplestranspose_samples
Generic validation methodvalidate
Validate analysis resultsvalidate_analyse_pars
Validate a longdata objectvalidate_dataice validate_datalong validate_datalong_complete validate_datalong_notMissing validate_datalong_types validate_datalong_unifromStrata validate_datalong_varExists
Validate user specified strategiesvalidate_strategies
Validate 'analysis' objectsvalidate.analysis
Validate 'draws' objectvalidate.draws
Validate 'is_mar' for a given subjectvalidate.is_mar
Validate inputs for 'vars'validate.ivars
Validate user supplied referencesvalidate.references
Validate 'sample_list' objectvalidate.sample_list
Validate 'sample_single' objectvalidate.sample_single
Validate a 'simul_pars' objectvalidate.simul_pars
Validate a 'stan_data' objectvalidate.stan_data