Title: | Exploratory Web Apps for Analyzing Clinical Trials Data |
---|---|
Description: | A 'shiny' based interactive exploration framework for analyzing clinical trials data. 'teal' currently provides a dynamic filtering facility and different data viewers. 'teal' 'shiny' applications are built using standard 'shiny' modules. |
Authors: | Dawid Kaledkowski [aut, cre] , Pawel Rucki [aut], Aleksander Chlebowski [aut] , Andre Verissimo [aut] , Kartikeya Kirar [aut], Vedha Viyash [aut], Marcin Kosinski [aut], Adrian Waddell [aut], Chendi Liao [rev], Dony Unardi [rev], Nikolas Burkoff [aut], Mahmoud Hallal [aut], Maciej Nasinski [aut], Konrad Pagacz [aut], Junlue Zhao [aut], Tadeusz Lewandowski [aut], F. Hoffmann-La Roche AG [cph, fnd], Maximilian Mordig [ctb] |
Maintainer: | Dawid Kaledkowski <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.15.2 |
Built: | 2025-01-02 03:27:23 UTC |
Source: | https://github.com/insightsengineering/teal |
teal_data
objects in modules for compatibilityConvert teal_data
to tdata
in teal
modules.
as_tdata(x)
as_tdata(x)
x |
data object, either |
Recent changes in teal
cause modules to fail because modules expect a tdata
object
to be passed to the data
argument but instead they receive a teal_data
object,
which is additionally wrapped in a reactive expression in the server functions.
In order to easily adapt such modules without a proper refactor,
use this function to downgrade the data
argument.
Object of class tdata
.
td <- teal_data() td <- within(td, iris <- iris) %>% within(mtcars <- mtcars) td as_tdata(td) as_tdata(reactive(td))
td <- teal_data() td <- within(td, iris <- iris) %>% within(mtcars <- mtcars) td as_tdata(td) as_tdata(reactive(td))
A helper function to create the browser title along with a logo.
build_app_title( title = "teal app", favicon = "https://raw.githubusercontent.com/insightsengineering/hex-stickers/main/PNG/nest.png" )
build_app_title( title = "teal app", favicon = "https://raw.githubusercontent.com/insightsengineering/hex-stickers/main/PNG/nest.png" )
title |
( |
favicon |
( |
A shiny.tag
containing the element that adds the title and logo to the shiny
app.
teal
moduleexample_module(label = "example teal module", datanames = "all")
example_module(label = "example teal module", datanames = "all")
label |
( |
datanames |
( |
A teal
module which can be included in the modules
argument to init()
.
app <- init( data = teal_data(IRIS = iris, MTCARS = mtcars), modules = example_module() ) if (interactive()) { shinyApp(app$ui, app$server) }
app <- init( data = teal_data(IRIS = iris, MTCARS = mtcars), modules = example_module() ) if (interactive()) { shinyApp(app$ui, app$server) }
get_code.tdata
This wrapper is to be used by downstream packages to extract the code of a tdata
object.
get_code_tdata(data)
get_code_tdata(data)
data |
( |
(character
) code used in the tdata
object.
tdata
objectFunction to get metadata from a tdata
object
get_metadata(data, dataname) ## S3 method for class 'tdata' get_metadata(data, dataname) ## Default S3 method: get_metadata(data, dataname)
get_metadata(data, dataname) ## S3 method for class 'tdata' get_metadata(data, dataname) ## Default S3 method: get_metadata(data, dataname)
data |
( |
dataname |
( |
Either list of metadata or NULL if no metadata.
shiny
appEnd-users: This is the most important function for you to start a
teal
app that is composed of teal
modules.
init( data, modules, filter = teal_slices(), title = build_app_title(), header = tags$p(), footer = tags$p(), id = character(0) )
init( data, modules, filter = teal_slices(), title = build_app_title(), header = tags$p(), footer = tags$p(), id = character(0) )
data |
( |
modules |
( |
filter |
( |
title |
( |
header |
( |
footer |
( |
id |
( |
When initializing the teal
app, if datanames
are not set for the teal_data
object,
defaults from the teal_data
environment will be used.
Named list with server and UI functions.
app <- init( data = teal_data( new_iris = transform(iris, id = seq_len(nrow(iris))), new_mtcars = transform(mtcars, id = seq_len(nrow(mtcars))), code = " new_iris <- transform(iris, id = seq_len(nrow(iris))) new_mtcars <- transform(mtcars, id = seq_len(nrow(mtcars))) " ), modules = modules( module( label = "data source", server = function(input, output, session, data) {}, ui = function(id, ...) div(p("information about data source")), datanames = "all" ), example_module(label = "example teal module"), module( "Iris Sepal.Length histogram", server = function(input, output, session, data) { output$hist <- renderPlot( hist(data()[["new_iris"]]$Sepal.Length) ) }, ui = function(id, ...) { ns <- NS(id) plotOutput(ns("hist")) }, datanames = "new_iris" ) ), filter = teal_slices( teal_slice(dataname = "new_iris", varname = "Species"), teal_slice(dataname = "new_iris", varname = "Sepal.Length"), teal_slice(dataname = "new_mtcars", varname = "cyl"), exclude_varnames = list(new_iris = c("Sepal.Width", "Petal.Width")), module_specific = TRUE, mapping = list( `example teal module` = "new_iris Species", `Iris Sepal.Length histogram` = "new_iris Species", global_filters = "new_mtcars cyl" ) ), title = "App title", header = tags$h1("Sample App"), footer = tags$p("Copyright 2017 - 2023") ) if (interactive()) { shinyApp(app$ui, app$server) }
app <- init( data = teal_data( new_iris = transform(iris, id = seq_len(nrow(iris))), new_mtcars = transform(mtcars, id = seq_len(nrow(mtcars))), code = " new_iris <- transform(iris, id = seq_len(nrow(iris))) new_mtcars <- transform(mtcars, id = seq_len(nrow(mtcars))) " ), modules = modules( module( label = "data source", server = function(input, output, session, data) {}, ui = function(id, ...) div(p("information about data source")), datanames = "all" ), example_module(label = "example teal module"), module( "Iris Sepal.Length histogram", server = function(input, output, session, data) { output$hist <- renderPlot( hist(data()[["new_iris"]]$Sepal.Length) ) }, ui = function(id, ...) { ns <- NS(id) plotOutput(ns("hist")) }, datanames = "new_iris" ) ), filter = teal_slices( teal_slice(dataname = "new_iris", varname = "Species"), teal_slice(dataname = "new_iris", varname = "Sepal.Length"), teal_slice(dataname = "new_mtcars", varname = "cyl"), exclude_varnames = list(new_iris = c("Sepal.Width", "Petal.Width")), module_specific = TRUE, mapping = list( `example teal module` = "new_iris Species", `Iris Sepal.Length histogram` = "new_iris Species", global_filters = "new_mtcars cyl" ) ), title = "App title", header = tags$h1("Sample App"), footer = tags$p("Copyright 2017 - 2023") ) if (interactive()) { shinyApp(app$ui, app$server) }
join_keys
from tdata
Extract join_keys
from tdata
## S3 method for class 'tdata' join_keys(data, ...)
## S3 method for class 'tdata' join_keys(data, ...)
data |
( |
... |
Additional arguments (not used) |
Creates a landing welcome popup for teal
applications.
This module is used to display a popup dialog when the application starts. The dialog blocks access to the application and must be closed with a button before the application can be viewed.
landing_popup_module( label = "Landing Popup", title = NULL, content = NULL, buttons = modalButton("Accept") )
landing_popup_module( label = "Landing Popup", title = NULL, content = NULL, buttons = modalButton("Accept") )
label |
( |
title |
( |
content |
( |
buttons |
( |
A teal_module
(extended with teal_landing_module
class) to be used in teal
applications.
app1 <- init( data = teal_data(iris = iris), modules = modules( landing_popup_module( content = "A place for the welcome message or a disclaimer statement.", buttons = modalButton("Proceed") ), example_module() ) ) if (interactive()) { shinyApp(app1$ui, app1$server) } app2 <- init( data = teal_data(iris = iris), modules = modules( landing_popup_module( title = "Welcome", content = tags$b( "A place for the welcome message or a disclaimer statement.", style = "color: red;" ), buttons = tagList( modalButton("Proceed"), actionButton("read", "Read more", onclick = "window.open('http://google.com', '_blank')" ), actionButton("close", "Reject", onclick = "window.close()") ) ), example_module() ) ) if (interactive()) { shinyApp(app2$ui, app2$server) }
app1 <- init( data = teal_data(iris = iris), modules = modules( landing_popup_module( content = "A place for the welcome message or a disclaimer statement.", buttons = modalButton("Proceed") ), example_module() ) ) if (interactive()) { shinyApp(app1$ui, app1$server) } app2 <- init( data = teal_data(iris = iris), modules = modules( landing_popup_module( title = "Welcome", content = tags$b( "A place for the welcome message or a disclaimer statement.", style = "color: red;" ), buttons = tagList( modalButton("Proceed"), actionButton("read", "Read more", onclick = "window.open('http://google.com', '_blank')" ), actionButton("close", "Reject", onclick = "window.close()") ) ), example_module() ) ) if (interactive()) { shinyApp(app2$ui, app2$server) }
teal
applicationDisplays custom splash screen during initial delayed data loading.
ui_teal_with_splash( id, data, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal_with_splash(id, data, modules, filter = teal_slices())
ui_teal_with_splash( id, data, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal_with_splash(id, data, modules, filter = teal_slices())
id |
( |
data |
( |
title |
( |
header |
( |
footer |
( |
modules |
( |
filter |
( |
This module pauses app initialization pending delayed data loading. This is necessary because the filter panel and modules depend on the data to initialize.
teal_with_splash
follows the shiny
module convention.
init()
is a wrapper around this that assumes that teal
it is
the top-level module and cannot be embedded.
Note: It is no longer recommended to embed teal
in shiny
apps as a module.
but rather use init
to create a standalone application.
Returns a reactive
expression containing a teal_data
object when data is loaded or NULL
when it is not.
teal_modules <- modules(example_module()) # Shiny app with modular integration of teal ui <- fluidPage( ui_teal_with_splash(id = "app1", data = teal_data()) ) server <- function(input, output, session) { srv_teal_with_splash( id = "app1", data = teal_data(iris = iris), modules = teal_modules ) } if (interactive()) { shinyApp(ui, server) }
teal_modules <- modules(example_module()) # Shiny app with modular integration of teal ui <- fluidPage( ui_teal_with_splash(id = "app1", data = teal_data()) ) server <- function(input, output, session) { srv_teal_with_splash( id = "app1", data = teal_data(iris = iris), modules = teal_modules ) } if (interactive()) { shinyApp(ui, server) }
TealReportCard
creation and customizationThis function generates a report card with a title, an optional description, and the option to append the filter state list.
report_card_template( title, label, description = NULL, with_filter, filter_panel_api )
report_card_template( title, label, description = NULL, with_filter, filter_panel_api )
title |
( |
label |
( |
description |
( |
with_filter |
( |
filter_panel_api |
( |
(TealReportCard
) populated with a title, description and filter state.
teal
module for previewing a reportThis function wraps teal.reporter::reporter_previewer_ui()
and
teal.reporter::reporter_previewer_srv()
into a teal_module
to be
used in teal
applications.
If you are creating a teal
application using init()
then this
module will be added to your application automatically if any of your teal_modules
support report generation.
reporter_previewer_module(label = "Report previewer", server_args = list())
reporter_previewer_module(label = "Report previewer", server_args = list())
label |
( |
server_args |
(named |
teal_module
(extended with teal_module_previewer
class) containing the teal.reporter
previewer functionality.
R
code modalUse the shiny::showModal()
function to show the R
code inside.
show_rcode_modal(title = NULL, rcode, session = getDefaultReactiveDomain())
show_rcode_modal(title = NULL, rcode, session = getDefaultReactiveDomain())
title |
( |
rcode |
( |
session |
( |
tdata
objectCreate a new object called tdata
which contains data
, a reactive
list of data.frames
(or MultiAssayExperiment
), with attributes:
code
(reactive
) containing code used to generate the data
join_keys (join_keys
) containing the relationships between the data
metadata (named list
) containing any metadata associated with the data frames
new_tdata(data, code = "", join_keys = NULL, metadata = NULL)
new_tdata(data, code = "", join_keys = NULL, metadata = NULL)
data |
(named |
code |
( |
join_keys |
( |
metadata |
(named |
A tdata
object.
as_tdata
data <- new_tdata( data = list(iris = iris, mtcars = reactive(mtcars), dd = data.frame(x = 1:10)), code = "iris <- iris mtcars <- mtcars dd <- data.frame(x = 1:10)", metadata = list(dd = list(author = "NEST"), iris = list(version = 1)) ) # Extract a data.frame isolate(data[["iris"]]()) # Get code isolate(get_code_tdata(data)) # Get metadata get_metadata(data, "iris")
data <- new_tdata( data = list(iris = iris, mtcars = reactive(mtcars), dd = data.frame(x = 1:10)), code = "iris <- iris mtcars <- mtcars dd <- data.frame(x = 1:10)", metadata = list(dd = list(author = "NEST"), iris = list(version = 1)) ) # Extract a data.frame isolate(data[["iris"]]()) # Get code isolate(get_code_tdata(data)) # Get metadata get_metadata(data, "iris")
tdata
object to an environment
Any reactive
expressions inside tdata
are evaluated first.
tdata2env(data)
tdata2env(data)
data |
( |
An environment
.
data <- new_tdata( data = list(iris = iris, mtcars = reactive(mtcars)), code = "iris <- iris mtcars = mtcars" ) my_env <- isolate(tdata2env(data))
data <- new_tdata( data = list(iris = iris, mtcars = reactive(mtcars)), code = "iris <- iris mtcars = mtcars" ) my_env <- isolate(tdata2env(data))
teal
applicationsCreate a teal_data_module
object and evaluate code on it with history tracking.
teal_data_module(ui, server) ## S4 method for signature 'teal_data_module,character' eval_code(object, code) ## S3 method for class 'teal_data_module' within(data, expr, ...)
teal_data_module(ui, server) ## S4 method for signature 'teal_data_module,character' eval_code(object, code) ## S3 method for class 'teal_data_module' within(data, expr, ...)
ui |
( |
server |
( |
object |
( |
code |
( |
data |
( |
expr |
( |
... |
See |
teal_data_module
creates a shiny
module to supply or modify data in a teal
application.
The module allows for running data pre-processing code (creation and some modification) after the app starts.
The body of the server function will be run in the app rather than in the global environment.
This means it will be run every time the app starts, so use sparingly.
Pass this module instead of a teal_data
object in a call to init()
.
Note that the server function must always return a teal_data
object wrapped in a reactive expression.
See vignette vignette("data-as-shiny-module", package = "teal")
for more details.
eval_code
evaluates given code in the environment of the teal_data
object created by the teal_data_module
.
The code is added to the @code
slot of the teal_data
.
within
is a convenience function for evaluating inline code inside the environment of a teal_data_module
.
It accepts only inline expressions (both simple and compound) and allows for injecting values into expr
through
the ...
argument: as name:value
pairs are passed to ...
, name
in expr
will be replaced with value.
teal_data_module
returns an object of class teal_data_module
.
eval_code
returns a teal_data_module
object with a delayed evaluation of code
when the module is run.
within
returns a teal_data_module
object with a delayed evaluation of expr
when the module is run.
teal.data::teal_data
, teal.code::qenv()
tdm <- teal_data_module( ui = function(id) { ns <- NS(id) actionButton(ns("submit"), label = "Load data") }, server = function(id) { moduleServer(id, function(input, output, session) { eventReactive(input$submit, { data <- within( teal_data(), { dataset1 <- iris dataset2 <- mtcars } ) datanames(data) <- c("dataset1", "dataset2") data }) }) } ) eval_code(tdm, "dataset1 <- subset(dataset1, Species == 'virginica')") within(tdm, dataset1 <- subset(dataset1, Species == "virginica")) # use additional parameter for expression value substitution. valid_species <- "versicolor" within(tdm, dataset1 <- subset(dataset1, Species %in% species), species = valid_species)
tdm <- teal_data_module( ui = function(id) { ns <- NS(id) actionButton(ns("submit"), label = "Load data") }, server = function(id) { moduleServer(id, function(input, output, session) { eventReactive(input$submit, { data <- within( teal_data(), { dataset1 <- iris dataset2 <- mtcars } ) datanames(data) <- c("dataset1", "dataset2") data }) }) } ) eval_code(tdm, "dataset1 <- subset(dataset1, Species == 'virginica')") within(tdm, dataset1 <- subset(dataset1, Species == "virginica")) # use additional parameter for expression value substitution. valid_species <- "versicolor" within(tdm, dataset1 <- subset(dataset1, Species %in% species), species = valid_species)
teal_module
and teal_modules
objectsCreate a nested tab structure to embed modules in a teal
application.
module( label = "module", server = function(id, ...) { moduleServer(id, function(input, output, session) { }) }, ui = function(id, ...) { tags$p(paste0("This module has no UI (id: ", id, " )")) }, filters, datanames = "all", server_args = NULL, ui_args = NULL ) modules(..., label = "root") ## S3 method for class 'teal_module' format(x, indent = 0, ...) ## S3 method for class 'teal_module' print(x, ...) ## S3 method for class 'teal_modules' format(x, indent = 0, ...) ## S3 method for class 'teal_modules' print(x, ...)
module( label = "module", server = function(id, ...) { moduleServer(id, function(input, output, session) { }) }, ui = function(id, ...) { tags$p(paste0("This module has no UI (id: ", id, " )")) }, filters, datanames = "all", server_args = NULL, ui_args = NULL ) modules(..., label = "root") ## S3 method for class 'teal_module' format(x, indent = 0, ...) ## S3 method for class 'teal_module' print(x, ...) ## S3 method for class 'teal_modules' format(x, indent = 0, ...) ## S3 method for class 'teal_modules' print(x, ...)
label |
( |
server |
(
|
ui |
(
|
filters |
( |
datanames |
( |
server_args |
(named |
ui_args |
(named |
... |
|
x |
( |
indent |
( |
module()
creates an instance of a teal_module
that can be placed in a teal
application.
modules()
shapes the structure of a the application by organizing teal_module
within the navigation panel.
It wraps teal_module
and teal_modules
objects in a teal_modules
object,
which results in a nested structure corresponding to the nested tabs in the final application.
Note that for modules()
label
comes after ...
, so it must be passed as a named argument,
otherwise it will be captured by ...
.
The labels "global_filters"
and "Report previewer"
are reserved
because they are used by the mapping
argument of teal_slices()
and the report previewer module reporter_previewer_module()
, respectively.
module()
returns an object of class teal_module
.
modules()
returns a teal_modules
object which contains following fields:
label
: taken from the label
argument.
children
: a list containing objects passed in ...
. List elements are named after
their label
attribute converted to a valid shiny
id.
library(shiny) module_1 <- module( label = "a module", server = function(id, data) { moduleServer( id, module = function(input, output, session) { output$data <- renderDataTable(data()[["iris"]]) } ) }, ui = function(id) { ns <- NS(id) tagList(dataTableOutput(ns("data"))) }, datanames = "all" ) module_2 <- module( label = "another module", server = function(id) { moduleServer( id, module = function(input, output, session) { output$text <- renderText("Another Module") } ) }, ui = function(id) { ns <- NS(id) tagList(textOutput(ns("text"))) }, datanames = NULL ) modules <- modules( label = "modules", modules( label = "nested modules", module_1 ), module_2 ) app <- init( data = teal_data(iris = iris), modules = modules ) if (interactive()) { shinyApp(app$ui, app$server) }
library(shiny) module_1 <- module( label = "a module", server = function(id, data) { moduleServer( id, module = function(input, output, session) { output$data <- renderDataTable(data()[["iris"]]) } ) }, ui = function(id) { ns <- NS(id) tagList(dataTableOutput(ns("data"))) }, datanames = "all" ) module_2 <- module( label = "another module", server = function(id) { moduleServer( id, module = function(input, output, session) { output$text <- renderText("Another Module") } ) }, ui = function(id) { ns <- NS(id) tagList(textOutput(ns("text"))) }, datanames = NULL ) modules <- modules( label = "modules", modules( label = "nested modules", module_1 ), module_2 ) app <- init( data = teal_data(iris = iris), modules = modules ) if (interactive()) { shinyApp(app$ui, app$server) }
TealReportCard
Child class of ReportCard
that is used for teal
specific applications.
In addition to the parent methods, it supports rendering teal
specific elements such as
the source code, the encodings panel content and the filter panel content as part of the
meta data.
teal.reporter::ReportCard
-> TealReportCard
teal.reporter::ReportCard$append_content()
teal.reporter::ReportCard$append_metadata()
teal.reporter::ReportCard$append_plot()
teal.reporter::ReportCard$append_rcode()
teal.reporter::ReportCard$append_table()
teal.reporter::ReportCard$append_text()
teal.reporter::ReportCard$from_list()
teal.reporter::ReportCard$get_content()
teal.reporter::ReportCard$get_metadata()
teal.reporter::ReportCard$get_name()
teal.reporter::ReportCard$initialize()
teal.reporter::ReportCard$reset()
teal.reporter::ReportCard$set_name()
teal.reporter::ReportCard$to_list()
append_src()
Appends the source code to the content
meta data of this TealReportCard
.
TealReportCard$append_src(src, ...)
src
(character(1)
) code as text.
...
any rmarkdown
R
chunk parameter and its value.
But eval
parameter is always set to FALSE
.
Object of class TealReportCard
, invisibly.
card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content()
append_fs()
Appends the filter state list to the content
and metadata
of this TealReportCard
.
If the filter state list has an attribute named formatted
, it appends it to the card otherwise it uses
the default yaml::as.yaml
to format the list.
If the filter state list is empty, nothing is appended to the content
.
TealReportCard$append_fs(fs)
fs
(teal_slices
) object returned from teal_slices()
function.
self
, invisibly.
append_encodings()
Appends the encodings list to the content
and metadata
of this TealReportCard
.
TealReportCard$append_encodings(encodings)
encodings
(list
) list of encodings selections of the teal
app.
self
, invisibly.
card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
clone()
The objects of this class are cloneable with this method.
TealReportCard$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `TealReportCard$append_src` ## ------------------------------------------------ card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content() ## ------------------------------------------------ ## Method `TealReportCard$append_encodings` ## ------------------------------------------------ card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
## ------------------------------------------------ ## Method `TealReportCard$append_src` ## ------------------------------------------------ card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content() ## ------------------------------------------------ ## Method `TealReportCard$append_encodings` ## ------------------------------------------------ card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
validate_has_data( x, min_nrow = NULL, complete = FALSE, allow_inf = TRUE, msg = NULL )
validate_has_data( x, min_nrow = NULL, complete = FALSE, allow_inf = TRUE, msg = NULL )
x |
( |
min_nrow |
( |
complete |
( |
allow_inf |
( |
msg |
( |
This function is a wrapper for shiny::validate
.
library(teal) ui <- fluidPage( sliderInput("len", "Max Length of Sepal", min = 4.3, max = 7.9, value = 5 ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_df <- iris[iris$Sepal.Length <= input$len, ] validate_has_data( iris_df, min_nrow = 10, complete = FALSE, msg = "Please adjust Max Length of Sepal" ) hist(iris_df$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
library(teal) ui <- fluidPage( sliderInput("len", "Max Length of Sepal", min = 4.3, max = 7.9, value = 5 ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_df <- iris[iris$Sepal.Length <= input$len, ] validate_has_data( iris_df, min_nrow = 10, complete = FALSE, msg = "Please adjust Max Length of Sepal" ) hist(iris_df$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
validate_has_elements(x, msg)
validate_has_elements(x, msg)
x |
vector |
msg |
message to display |
This function is a wrapper for shiny::validate
.
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B"), each = 15) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("arm_summary") ) server <- function(input, output) { output$arm_summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_has_elements(sample_1, "No subjects in strata1.") validate_has_elements(sample_2, "No subjects in strata2.") paste0( "Number of samples in: strata1=", length(sample_1), " comparions strata2=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B"), each = 15) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("arm_summary") ) server <- function(input, output) { output$arm_summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_has_elements(sample_1, "No subjects in strata1.") validate_has_elements(sample_2, "No subjects in strata2.") paste0( "Number of samples in: strata1=", length(sample_1), " comparions strata2=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_has_variable(data, varname, msg)
validate_has_variable(data, varname, msg)
data |
( |
varname |
( |
msg |
( |
This function is a wrapper for shiny::validate
.
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20) ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_has_variable(data, input$var) paste0("Selected treatment variables: ", paste(input$var, collapse = ", ")) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20) ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_has_variable(data, input$var) paste0("Selected treatment variables: ", paste(input$var, collapse = ", ")) }) } if (interactive()) { shinyApp(ui, server) }
validate_in(x, choices, msg)
validate_in(x, choices, msg)
x |
Vector of values to test. |
choices |
Vector to test against. |
msg |
( |
This function is a wrapper for shiny::validate
.
ui <- fluidPage( selectInput( "species", "Select species", choices = c("setosa", "versicolor", "virginica", "unknown species"), selected = "setosa", multiple = FALSE ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderPrint({ validate_in(input$species, iris$Species, "Species does not exist.") nrow(iris[iris$Species == input$species, ]) }) } if (interactive()) { shinyApp(ui, server) }
ui <- fluidPage( selectInput( "species", "Select species", choices = c("setosa", "versicolor", "virginica", "unknown species"), selected = "setosa", multiple = FALSE ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderPrint({ validate_in(input$species, iris$Species, "Species does not exist.") nrow(iris[iris$Species == input$species, ]) }) } if (interactive()) { shinyApp(ui, server) }
Captures messages from InputValidator
objects and collates them
into one message passed to validate
.
validate_inputs(..., header = "Some inputs require attention")
validate_inputs(..., header = "Some inputs require attention")
... |
either any number of |
header |
( |
shiny::validate
is used to withhold rendering of an output element until
certain conditions are met and to print a validation message in place
of the output element.
shinyvalidate::InputValidator
allows to validate input elements
and to display specific messages in their respective input widgets.
validate_inputs
provides a hybrid solution.
Given an InputValidator
object, messages corresponding to inputs that fail validation
are extracted and placed in one validation message that is passed to a validate
/need
call.
This way the input validator
messages are repeated in the output.
The ...
argument accepts any number of InputValidator
objects
or a nested list of such objects.
If validators
are passed directly, all their messages are printed together
under one (optional) header message specified by header
. If a list is passed,
messages are grouped by validator
. The list's names are used as headers
for their respective message groups.
If neither of the nested list elements is named, a header message is taken from header
.
Returns NULL if the final validation call passes and a shiny.silent.error
if it fails.
shinyvalidate::InputValidator
, shiny::validate
library(shiny) library(shinyvalidate) ui <- fluidPage( selectInput("method", "validation method", c("sequential", "combined", "grouped")), sidebarLayout( sidebarPanel( selectInput("letter", "select a letter:", c(letters[1:3], LETTERS[4:6])), selectInput("number", "select a number:", 1:6), br(), selectInput("color", "select a color:", c("black", "indianred2", "springgreen2", "cornflowerblue"), multiple = TRUE ), sliderInput("size", "select point size:", min = 0.1, max = 4, value = 0.25 ) ), mainPanel(plotOutput("plot")) ) ) server <- function(input, output) { # set up input validation iv <- InputValidator$new() iv$add_rule("letter", sv_in_set(LETTERS, "choose a capital letter")) iv$add_rule("number", function(x) { if (as.integer(x) %% 2L == 1L) "choose an even number" }) iv$enable() # more input validation iv_par <- InputValidator$new() iv_par$add_rule("color", sv_required(message = "choose a color")) iv_par$add_rule("color", function(x) { if (length(x) > 1L) "choose only one color" }) iv_par$add_rule( "size", sv_between( left = 0.5, right = 3, message_fmt = "choose a value between {left} and {right}" ) ) iv_par$enable() output$plot <- renderPlot({ # validate output switch(input[["method"]], "sequential" = { validate_inputs(iv) validate_inputs(iv_par, header = "Set proper graphical parameters") }, "combined" = validate_inputs(iv, iv_par), "grouped" = validate_inputs(list( "Some inputs require attention" = iv, "Set proper graphical parameters" = iv_par )) ) plot(faithful$eruptions ~ faithful$waiting, las = 1, pch = 16, col = input[["color"]], cex = input[["size"]] ) }) } if (interactive()) { shinyApp(ui, server) }
library(shiny) library(shinyvalidate) ui <- fluidPage( selectInput("method", "validation method", c("sequential", "combined", "grouped")), sidebarLayout( sidebarPanel( selectInput("letter", "select a letter:", c(letters[1:3], LETTERS[4:6])), selectInput("number", "select a number:", 1:6), br(), selectInput("color", "select a color:", c("black", "indianred2", "springgreen2", "cornflowerblue"), multiple = TRUE ), sliderInput("size", "select point size:", min = 0.1, max = 4, value = 0.25 ) ), mainPanel(plotOutput("plot")) ) ) server <- function(input, output) { # set up input validation iv <- InputValidator$new() iv$add_rule("letter", sv_in_set(LETTERS, "choose a capital letter")) iv$add_rule("number", function(x) { if (as.integer(x) %% 2L == 1L) "choose an even number" }) iv$enable() # more input validation iv_par <- InputValidator$new() iv_par$add_rule("color", sv_required(message = "choose a color")) iv_par$add_rule("color", function(x) { if (length(x) > 1L) "choose only one color" }) iv_par$add_rule( "size", sv_between( left = 0.5, right = 3, message_fmt = "choose a value between {left} and {right}" ) ) iv_par$enable() output$plot <- renderPlot({ # validate output switch(input[["method"]], "sequential" = { validate_inputs(iv) validate_inputs(iv_par, header = "Set proper graphical parameters") }, "combined" = validate_inputs(iv, iv_par), "grouped" = validate_inputs(list( "Some inputs require attention" = iv, "Set proper graphical parameters" = iv_par )) ) plot(faithful$eruptions ~ faithful$waiting, las = 1, pch = 16, col = input[["color"]], cex = input[["size"]] ) }) } if (interactive()) { shinyApp(ui, server) }
validate_n_levels(x, min_levels = 1, max_levels = 12, var_name)
validate_n_levels(x, min_levels = 1, max_levels = 12, var_name)
x |
variable name. If |
min_levels |
cutoff for minimum number of levels of |
max_levels |
cutoff for maximum number of levels of |
var_name |
name of variable being validated for use in validation message |
If the number of levels of x
is less than min_levels
or greater than max_levels
the validation will fail.
This function is a wrapper for shiny::validate
.
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20), three = rep(c("a", "b", "c"), length.out = 20), four = rep(c("a", "b", "c", "d"), length.out = 20), stringsAsFactors = TRUE ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_n_levels(data[[input$var]], min_levels = 2, max_levels = 15, var_name = input$var) paste0( "Levels of selected treatment variable: ", paste(levels(data[[input$var]]), collapse = ", " ) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20), three = rep(c("a", "b", "c"), length.out = 20), four = rep(c("a", "b", "c", "d"), length.out = 20), stringsAsFactors = TRUE ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_n_levels(data[[input$var]], min_levels = 2, max_levels = 15, var_name = input$var) paste0( "Levels of selected treatment variable: ", paste(levels(data[[input$var]]), collapse = ", " ) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_no_intersection(x, y, msg)
validate_no_intersection(x, y, msg)
x |
vector |
y |
vector |
msg |
( |
This function is a wrapper for shiny::validate
.
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B", "C"), each = 10) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_no_intersection( sample_1, sample_2, "subjects within strata1 and strata2 cannot overlap" ) paste0( "Number of subject in: reference treatment=", length(sample_1), " comparions treatment=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B", "C"), each = 10) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_no_intersection( sample_1, sample_2, "subjects within strata1 and strata2 cannot overlap" ) paste0( "Number of subject in: reference treatment=", length(sample_1), " comparions treatment=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_one_row_per_id(x, key = c("USUBJID", "STUDYID"))
validate_one_row_per_id(x, key = c("USUBJID", "STUDYID"))
x |
( |
key |
( |
This function is a wrapper for shiny::validate
.
iris$id <- rep(1:50, times = 3) ui <- fluidPage( selectInput( inputId = "species", label = "Select species", choices = c("setosa", "versicolor", "virginica"), selected = "setosa", multiple = TRUE ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_f <- iris[iris$Species %in% input$species, ] validate_one_row_per_id(iris_f, key = c("id")) hist(iris_f$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
iris$id <- rep(1:50, times = 3) ui <- fluidPage( selectInput( inputId = "species", label = "Select species", choices = c("setosa", "versicolor", "virginica"), selected = "setosa", multiple = TRUE ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_f <- iris[iris$Species %in% input$species, ] validate_one_row_per_id(iris_f, key = c("id")) hist(iris_f$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }